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Who is NOT working on Machine Learning?
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A Simple Example of Using Neural Networks
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Standard Neural Network Packages

model=Sequential()
model.add(Dense(Cy, activation='softmax', input dim=Dx))

sgd = SGD(1lr=0.01, decay=le-6, momentum=0.9, nesterov=True)

model .compile(loss='categorical crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X,Labels, verbose=0, epochs=200, batch size=200)

* Fitting: decide weights by stochastic gradient descent.

e |t works, but how?




“What I cannot create, I do not understand. ”

— Richard Feynman




We need confidence while learning

Fraud Structural Medical Business Data
Detection Engineering Applications Analytics




What About Deep Networks
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What is it doing before the last layer?




Our Wish List for a Good Learning Theory

*  More General:
. Many different types of data.
. Different time scales and qualities.
. Not clear what we are looking for.

*  More Flexible: General Purpose Processing and Information Market
. Labels, Experts, and Fake News
. Sensitive Information

. More Guarantees:
. How Good Is Your Data?
. Does It Solve My Problem?



Good Theory: Information Theory

* Information Theory: Claud Shannon
— How much information do you obtain from an observation?
— Measured in units of “bits”

— Universal interface for compression and transmission
* To make it simple: the more surprised, the more information
*  Kullback-Leibler divergence D(P||Q): the distance between two distributions

*  Metrics with Operational Meaning
—  Limit of compression

— Channel capacity

€6

requently the messages have meaning; ... |
These semantic aspects of communication L
are irrelevant to the engineering problem. ”

— C. E. Shannon




Generalization of Information Theory: from Bit to Vector

 Hope for new metrics:

— Captures semantics: what is a partial piece of Distribution Q < [Q(z) — Py(z),xz € X]
information, and what is it about? 5Pace

— Computable: not just from models but directly
from data; |nformation R Q(z) — Py(z) e A.’]

— Backward Compatible; VCCtorSPaCC Po(z)

— Operational Meaning: related to inference
performance; [Tunctional LR o [log Q@) Q@) —P(@) X]

— Don’t take away too much! Space Po(2) Po(z)

* Backward compatibility Qo

D(P)Q) = [1¢” - ¢ |

* Most importantly, information now have directions P

Distribution Space



Let’s Draw a Picture

e Total information = length of Q

displacement vector

* Each score f(-) we evaluate corresponds

to a particular direction in functional space;

* Partial Information, Score = E5[f(X )| = (¢, v) projection




An easy problem: Detection Problem
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e Some feature U of X that we want to detect from

* noisy observations Y

* Example like from behavior decide user profile



A Harder Problem:
What if We Don't Know What To Detect?

 Need processed data to be used for multiple purposes;
* Need to reduce dimensionality before learning the models;

e Cannot name what attribute we wish to make inference (e.g.
recommendation, community detection)

* Good news: the picture still holds, and we can find the set of

features with best performance on average
B
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Put Theory to Work: Neural Networks
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 The goal of Neural Networks is the same: to pick the “useful” features of high
dimensional observations.

e Supervision: want to specify the dependence between the inputs and the
labels

* Forward/Backprop = Alternating conditional expectation, with constraints



What Do We Gain Conceptually?

* Every weight in every layer computes conditional expectations;
 Two way selection of informative features, where are they?

* Other learning algorithms viewed the same way: PCA, CCA,
Compressed Sensing...

Where Do We Go from Here?

e Generic information vs. task-specific information: where do we put
the prior, costs, and other constraints?

e Supervised vs. unsupervised: common information between more
than two random variables — multi-terminal neural networks?

* Separation vs. no separation: transfer learning/multi-task learning,
data sharing.



NOW, SOME EXAMPLES

PLoc: Powerline indoor occupancy
sensing

MetroEYE: Measuring Fine-grained
Metro Interchange Time

»J X Occupancy detection via Footstep
{ induced building vibration
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BAHLEMREM | PlLoc: Occupancy Sensing via Power Line

Indoor Localization and Occupancy Sensing

Indoor localization information is essential in many pervasive
applications in commercial buildings.

» Estimate the user walking patterns.

» Measure occupancies of room for energy saving.

» Optimize space utilization.

Global infrastructure based: GPS, etc.

» Bad performance due to blockage
of satellite signals.

Local infrastructure based: Camera,
microphone, PIR sensors, UWB radar, etc.

» Large deployment and maintenance
costs.

e e

» The hardware is not carried all
the time.




Our method: P-Loc Powerline-Localization

A E * Human body: conductor.

* Powerline: viewed as an antenna.

* Human body’s location <- Signal changes
— captured by the powerline.
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Performance
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MetroEYE: Measuring Fine-grained
Metro Interchange Time via Smartphones

Motivation

« Underground metro has been a major solution to urban traffic problem
— 55 Countries, 140 Cities with Underground Metro Systems
— Daily passengers: Shanghai 11.3 M, Beijing 12.7 M, London 4.8 M
* Metro Networks are very Complex
— Beijing: 53 Interchanging stations, including 3 3-line interchanging stations.
— Interchanging time is highly variable and a major impacting factor of QoS

— One minute interchanging time saving for each passenger result in 24 yr time saving
every day

« Understanding Interchanging time is important
— Better planning of station layout: platform, stairs, elevators, etc.
— Tracking the congestion level of passenger.
— Assist optimizing the timetable of metros.




MetroEYE : Approach
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MetroEYE: Results Mobiqu
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Person ldentification via Steps-induced Vibration

Person identification in smart building enables
- Elderly/Child monitoring
- Enhanced security
— Energy usage profiling

Human footsteps induced floor vibration
— People’s gaits are unique (for identification)
— Unique gait induces unique floor vibration
— Floor vibration sensing is sparse, passive and constraint-less

= Civil & Environmental
D ENGINEERING



Person Identification through Floor Vibration
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Person Identification through Floor Vibration

|ldentify 5 people

Non-thresholding

« Step level classification
reaches over 60%
accuracy

* Trace level classification
accuracy improves over
20%
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About Tsinghua-Berkeley Shenzhen Institute ( TBSl.edu.cn )

* Established in 2015, by UC Regent, Tsinghua University with supports from Shenzhen government
*  Faculty: 20 Berkeley Professors, 30 Tsinghua Professors, 22 TBSI full-time professors

* Degree program: Ph.D. and Dual master degree, now with 200 students
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