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The transportation model: roads

Road network
32,858 road segments
20 million trips per day
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The transportation model: rail

Road network
32,858 road segments
20 million trips per day

Other transit (walk, bike, rail, ferry,
bus)

43 additional modes
4 million trips per day
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Performance-based assessment: four analysis stages

Sanga. Rosa

®

Step I: Step 2: Step 3: Step 4:
Ground-motion Component damage  Network User impacts
intensity performance
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Step la: Earthquake ruptures

Uniform California Earthquake
Rupture Forecast, v2 (Field et al,,

2009)
e All earthquake sources in the
region

* Magnitudes discretized in units of
0.1 (5.0,5.1,5.2, ..))

* Locations randomized

2800 earthquake ruptures, each with
an annual rate of occurrence

Enabled by www.opensha.org
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Step |b: Site conditions

Average shear wave velocity in the top
30m is used to characterize site
conditions

Values are inferred from topographic
slope (Wald and Allen, 2007)
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Step lc: Ground motion prediction

Median and standard Spatially correlated Simulated ground
deviation of ground motion amplitude variability motion amplitude
amplitude, given

* Magnitude Measured here using
* Source-to-site distance spectral acceleration
» Site conditions at | second [Sa(/s)]
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Software to perform Step | is available at www.stanford.edu/~bakerjwl/infrastructure.html

Jayaram and Baker (2010). “Efficient sampling and data reduction
techniques for probabilistic seismic lifeline risk assessment.”
Earthquake Engineering & Structural Dynamics, 39, 1109—1131.
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Step 2: Component damage
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Consider network interdependencies

Through field surveys and aerial
photograph studies, we identified
overpasses whose closure would
also necessitate closing under-passes

From Google Maps
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Step 2: Component damage

1’743 road bridges
1409 transit bridges

Here we consider major damage
only (the bridge would be closed one
week after an earthquake)

Adjacent bridges are likely to be
simultaneously damaged due to
spatial correlation in ground motions
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Reduce the number of simulations for network analysis

Ground motion hazard at a site Proxy performance metric hazard
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Santa Rosa
.

Select a subset of maps and reweight, to
reproduce ground motion hazard at multiple
sights and a proxy performance metric

Miller and Baker (2015).“Ground-motion intensity and damage map
selection for probabilistic infrastructure network risk assessment using
optimization.” EQ Engineering & Structural Dynamics, 44(7), | 139—-1156.
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Step 3: Damaged network and network performance

We consider the network state one Prepare data
week after an earthquake
h 4
Reduce flow capacity <€ -
|
v | 2
Stage I: Determine demand |2
. . ©
Transit model from the Metropolitan (CT-RAMP) 15
. .. v lea
Transportation Commission Stage 2:Assign trips |
. CUBE
— Variable travel demand (CUBE)
— Population represented by >
. . Stage |: Determine demand ¢ - 2
agents with trip preferences (CT-RAMP) 15
v B
— 6+ hours to analyze network Stage 2:Assign trips | _ | &
and behavior for one (CUBE)
simulation v
Post-process data

Miller; Cortes, Ory, Baker, (2015).“Estimating impacts of catastrophic
network damage from earthquakes using an activity-based travel
model.” Transportation Research Board 94th Annual Meeting.
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Step 3: Damaged network and network performance

We consider the network state one
week after an earthquake

Transit model from the Metropolitan
Transportation Commission

— Variable travel demand

— Population represented by
agents with trip preferences

— 6+ hours to analyze network
and behavior for one
simulation

Travel time increase




J. Baker

Step 4: Measure user impacts

Each user has a set of transportation
choices, made of

i = Mode (drive, bike, take a bus...)
j = Destination (work, shopping, ...)

U; = user n’s utility for mode i and
destination j (calibrated from survey

data)

Mode-Destination Accessibility
measures these utilities (Niemeier

1997):

U.
A =In > e’

all choices

User accessibility decrease
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One simulation (of many possible events)

Earthquake ground motion Bridge damage Travel time increase User accessibility decrease

Santa. Rosa

L 2
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Results: Three example communities
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Miller, and Baker (2016).“Coupling mode-
destination accessibility with a quantitative seismic-
risk assessment to identify at-risk communities.”
Reliability Engineering and System Safety, 147, 60-71.
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Decision support: ldentifying retrofit priorities
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Our group’s contributions in performance-based framework

Earthquake ground motion Bridge damage Travel time increase User accessibility decrease

Sanga. Rosa )

®

Na‘pa

San Jose
L]

» Calibration of spatial correlations * Using transit models to model
(and demonstration of impacts) probabilistic earthquake risk
» Efficient simulation algorithms * Retrofit prioritization strategies

* Optimization to select subsets
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Conclusions

The performance-based engineering paradigm transfers naturally to
distributed infrastructure, with a few caveats

— The “triple-integral” requires Monte Carlo simulation to evaluate

— The “decision variable” can be complex to evaluate

The benefits, in terms of decision support and producing metrics relevant
to stakeholders, clearly still remain

Our planned work:
— Reduction of system risk by identifying optimal retrofits or upgrades

— Simulation of the recovery process for resilience quantification

web.stanford.edu/~bakerjw



