

Pacific Earthquake Engineering Research Center 2018 Annual Meeting

UC BERKELEY • CALTECH • OSU • STANFORD • UC DAVIS • UC IRVINE • UC LOS ANGELES • UC SAN DIEGO • UNR • USC • U WASHINGTON

Closure, Wrap Up & 2017 PEER Blind Prediction Contest

Khalid M. Mosalam PEER Director, Taisei Prof. of Civil Eng.

PEER at 21: The Practice of Performance-Based Engineering for Natural Hazards

PEER Annual Meeting – Berkeley, CA

January 18-19, 2018

2017 PEER Blind Prediction Contest

- ✓ Collaborative effort between UCSD & UCB
- Team: A. Nema, J. Restrepo, UCSD; Y. Wu, S. Günay, K. Mosalam, UCB
- $\checkmark~$ Bridge bent with 2 columns
- $\checkmark~$ Self-centering with PT bars
- ✓ Energy dissipation by unbonded longitudinal rebar yielding
- ✓ Tested at the UC Berkeley PEER shaking table in Sept. 2017

The Contest

Resilient here means self-centering

Event Name	Station Name	NGA #	Rotation	Unscaled PGA [g]	Scale Factor	Target Drift [%]
Random Noise	-	-	-	2.5% RMS		0.1
Landers, 1992	Lucerne	879	10	0.72	0.9	0.6
Random Noise	-	-	-	2.5% RMS		0.1
Landers, 1992	Lucerne	879	10	0.72	0.9	0.6
Random Noise	-	-	-	2.5% RMS		0.1
Tabas, 1978	Tabas	143	30	0.85	-0.9	1.8
Random Noise	-	-	-	2.5% RMS		0.1
Kocaeli, 1999	Yarimca	1176	62	0.3	1	0.6
Random Noise	-	-	-	2.5% RMS		0.1
Northridge, 1994	Rinaldi	1063	-30	0.85	0.81	4
Random Noise	-	-	-	2.5% RMS		0.1
Duzce, 1999	Duzce	1605	88	0.51	1	1.8
Random Noise	-	-	-	2.5% RMS		0.1
Northridge, 1994	Newhall	1044	58	0.72	-1.2	4
Random Noise	-	-	-	2.5% RMS		0.1
Kobe, 1995	Takatori	1120	-40	0.76	-0.8	5
Random Noise	-	-	-	2.5% RMS		0.1
Kobe, 1995	Takatori	1120	-40	0.76	0.9	7
Random Noise	-	-	-	2.5% RMS		0.1
Tabas, 1978	Tabas	143	30	0.85	-0.9	-
Random Noise	-	-	-	2.5% RMS		0.1
Northridge, 1994	Rinaldi	1063	-30	0.85	0.81	-
Random Noise	-	-	-	2.5% RMS		0.1
Kobe, 1995	Takatori	1120	-40	0.76	-0.8	-
Random Noise	-	-	-	2.5% RMS		0.1

Blind Prediction Contest

Blind Prediction Contest 2017

Home Input Data Rules Submission Notification, Q & A Sponsors

PEER Blind Prediction Contest of Shaking Table Tests for a 1/3-Scale Bridge Bent with Resilient Columns

Winners have been notified!

We thank all participants who submitted entries to the contest. The winners have been identified and informed. A public release of the winners names and a summary of the contest results will take place during the <u>PEER Annual</u> <u>Meeting</u> on January 18th, 2018.

Search

Important Dates

Blind Prediction Contest

- November 1, 2017: Deadline for questions: Closed
- December 4, 2017 (extended): Deadline for submittals of prediction results of post-test analysis
- December 11, 2017: Winners will be notified
- January 18-19, 2018: Winners will be announced at the PEER Annual Meeting

10 teams in "Research & Academic Category"
9 teams in "Practicing

Engineers Category"

2018 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

PEF

The Contest

Provided Information Included:

- Structural drawings
- □ Tested material properties for steel bars, concrete, prestressing bars, steel shell & grout
- □ Construction sequence including photographs
- Accelerations measured on the table for each test
- Properties of the weight blocks

Category	1	2	3	4	5	6	7	8	9	10
Engineers	397	371	290	245	197	197	122	109	92	-
Researchers	382	304	228	223	214	201	194	103	99	54

Scoring was based on:

- □ 13 quantities predicted for each of the 9 ground motions (Total: $13 \times 9 = 117$ quantities)
- □ For each quantity, team with min. error \rightarrow 8 points, 2nd \rightarrow 5 points, 3rd \rightarrow 3 points, 4th \rightarrow 1 point, and others \rightarrow **zero**.
- □ Total score of each team is sum of all points from the 117 quantities. Two teams of highest score in the practicing engineers & research communities are the winners.

Predicted Quantities

Winning Team: Research & Academic Category

University of Bergamo, ITALY

Michele Egidio BRESSANELLI

Post-graduate researcher

Andrea BELLERI, PhD

Marco BOSIO Post-graduate student

Assistant professor, Principal Investigator

2018 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

create a refined analysis in Abaqus to validate a simplified beam model (MidasGEN) to be used in the contest.

Although, due to time constraints...

the simplified models have been directly validated by means of pushover analyses

MidasGEN, 2017

Although, due to convergence issues...

the model has been further simplified in the time-history analyses

Pushover

1st Method: Pushover Analysis						
Geometric Nonlinearity Type: Large Displacements						
Maximum step size [s] 1.00E						
Maximum	5					
Convergence criteria	Displacement Norm	1.00E-06				
	Force Norm	1.00E-06				
	Energy Norm	1.00E-07				
Dungo Kutto Mothod	Fehlberg Meth	lod				
Runge Rulla Melhod	Tollerance	1.00E-07				

Time history

2nd Method: Time History Analysis						
Geometric Nonlinearity Type: Large Displacements						
Maximum Number of Substeps 2						
Maximum	10					
	Displacement Norm	1.00E-05				
Convergence criteria	Force Norm	1.00E-05				
	Energy Norm	1.00E-05				
Rungo Kutta Mathad	Fehlberg Method					
Runge Rulla Melhou	Tollerance	1.00E-08				
Damping Method: Mass e Stiffness Proportional						
Damping Type	Mode 1	Mode 2				
Period [s]	0.1	1				
Damping Ratio	3%	3%				
Nowmork Mothed	Gamma	0.5				
	Beta	0.25				

DAMPING Mass + Tangent-stiffness Rayleigh damping

2018 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

10

Winning Team: Practicing Engineers Category

NYA – SAN FRANCISCO TEAM

Grigorios Antonellis, PhD, PE, Sr. Analyst

Andrew Ma, SE, Sr. Project Engineer

Anthony Giammona, SE, Vice President

- Two <u>independent</u> internal teams (LA vs SF office)
- Limited amount of man hours per team (~ 70 billable hours)
- ETABS 2016 Ultimate used intentionally to evaluate capabilities of common design software

ETABS 2016 Ultimate Model

Additional Modeling Assumptions

- Cap and foundation beams modeled as rigid elements.
- Point masses at selected joints along cap beam (translational and rotatory).
- Post tensioning modeled as external force at top of tendons.
- Kinematic steel hardening for #4 rebar and PT tendons.
- Confined concrete stress-strain per Mander.
- All joints restrained for out of plane motion.
- 0.2% modal damping at 0.1s and 1s.
- HHT integration scheme with a=-0.10
- Model T1=0.215 s.

Plan View

Analysis Results

Quantity	GM1	GM2	GM3	GM4	GM5	GM6	GM7	GM8	GM9
Max DR (%)	0.41	0.35	1.29	0.39	2.29	1.46	3.30	2.24	4.10
Residual DR (%)	0.01	0.01	0.01	0.00	0.03	0.02	0.02	0.01	0.09
V _b /W	0.49	0.47	0.71	0.48	0.75	0.62	0.78	0.72	0.80
Max PT force (kip)	104	104	129	103	156	132	182	152	199
Residual PT force (kip)	96	96	96	96	96	96	97	97	97

2018 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

PEF

Summary and conclusions

- Commercial software capabilities have been improving over the past few years. ETABS 2016 Ultimate was successfully used in this study.
- Use of NL springs (Links) is preferred instead of NL truss elements and PMM hinges, where possible.
- Sensitivity studies can be used to fine-tune the modeling:
 - Kinematic vs isotropic hardening vs Steel02 (OpenSees)
 - Discretization and effective length of concrete NL springs

Both NYA teams used ETABS 2016 Ultimate and similar modeling strategies. SF team underestimated (and LA team overestimated) displacement related results. Force / acceleration related results were generally very similar for both teams.

Acknowledgments

- Researchers and everyone at PEER who helped organize this contest
- NYA management for encouraging and supporting participation

Check <u>http://peer.berkeley.edu/</u> for future **2018-2028** (sometime in **Fall**) PEER Blind Prediction Contests

The Survey

Additional information sought from contestants in a form of a survey included:

- Nonlinear analysis program used
- □ Column modeling
- □ Cap beam modeling
- □ Footing modeling
- Post-Tension bar modeling
- Mass block formulation
- Rotational mass
- Damping model
- Damping ratio
- Integration scheme
- Integration time-step
- □ Second-order effects
- □ 80% Confidence estimations

2018 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

More Sample Results

More Sample Results

Max. PT Force in Column 1

80% confidence estimates are self-reported.

PEER

Survey Statistics

Survey Statistics

Survey Statistics

PEER Hub Image (PHI) 2018 Φ-Challenge

- ✓ PEER will hold this annual image challenge where each team will complete several multiclassification tasks and a localization task.
- ✓ More than 20,000 labeled images will be provided as training data to the contestants.
- ✓ Detection performance will be evaluated on test images, for which labels will not be provided.
- ✓ Prediction results will be accompanied with a brief report including algorithm/method that should be submitted at the same time.

No spalling / Spalling

No cracks / Hairline cracked / Heavy cracked

No damage/ Flexural damage / Shear damage / Combined damage

Call for Contribution to 2018 Φ-Challenge

□ Call for uploading images to SPO website, <u>http://peer.berkeley.edu/spo</u>

□ Labeling images by a new web application (**under development**) on SPO website

Thank You, Enjoy The Poster Session

	Thursday January 18	Friday January 19			
8:00 - 8:30 am	REGISTRATION / BREAKFAST	REGISTRA	ATION / BREAKFAST		
8:30 - 9:00 am	PLENARY - 1 PEER Overview	PLENARY - 7 Opening & Keynote Presentation			
9:00 -10:30 am	PLENARY - 2 Earthquake Hazard Characterization	CONCURRENT DISCUSSION - C1 Buildings	CONCURRENT DISCUSSION - C2 Characterization of Geohazards		
10:30 - 10:45 am	BREAK		BREAK		
10:45 - 12:15 pm	PLENARY - 3 Performance-Based Engineering: Applications	CONCURRENT DISCUSSION - C3 Bridges	CONCURRENT DISCUSSION - C4 Designing for GeoHazards		
12:15 - 1:30 pm	LUNCH & Special Presentation	LUNCH & Special Presentation			
1:30 - 3:00 pm	PLENARY - 4 Performance-Based Engineering: Research	PLENARY - 8 Computational Simulation			
3:00 - 3:15 pm	BREAK	BREAK			
3:15 - 4:45 pm	PLENARY - 5 Engineering and Public Policy for Earthquake Resilient Communities	PLENARY - 9 Reports & Wrap Up Adjourn at 4:00 pm			
4:45 - 5:00 pm	PLENARY- 6 Closure & Wrap Up 2017 Blind Prediction Contest Winner				
5:30 - 7:30 pm	Poster Session & Reception				
6:30 - 8:30 pm	BIP Dinner (invitation only)				

30 PEER