

Kevin Thompson, Director of Engineering

Jan 29, 2016 PEER Annual Meeting – Berkeley California

CONNECTING CALIFORNIA: PROJECT SCOPE

Phase I:

- » 520 Miles
- » San Francisco to Los Angeles/Anaheim
- Phase II:
- » Extends 300 Miles
- » Connections to Sacramento & San Diego
- Proposition 1A
- » At Least 200 mph
- San Francisco-Los Angeles Union Station: Under 3 hours
- » 24 total stations

PROGRAM DELIVERY STATUS: DESIGN AND CONSTRUCTION

Construction Package 1

» 29 miles between Madera and Fresno

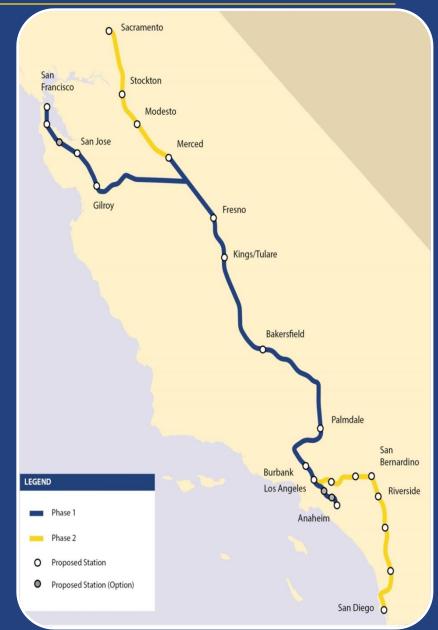
» Construction underway

Construction Package 2-3

- » 65 miles between Fresno and Tulare-Kern County line
- » Executed in July 2015
- » Baseline schedules due for ROW, design and construction.

Construction Package 4

- » 22 miles between Tulare-Kern County line and North of Bakersfield
- » Design-Build Award Early 2016
- » SOQ for Project and Construction Management (PCM), awarded to HNTB Corporation

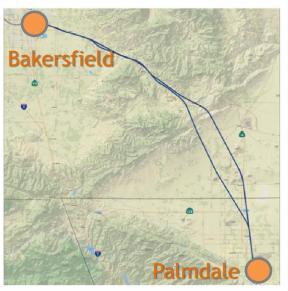


PROGRAM DELIVERY STATUS: STATION COMMUNITIES

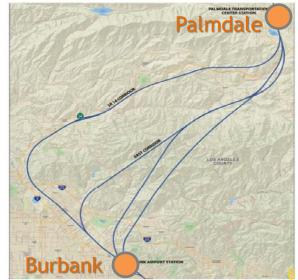
Up to 24 Stations

» Some built from ground-up (Palmdale, Burbank)

- » Some intergraded into existing stations (San Jose, LA Union Station, ARTIC)
- Stations Communities will Enhance Surrounding Areas Through:
 - » Active Transportation Opportunities (Bikes, Walking, etc.)
 - » Creating Vibrant, Urban Centers and Livable Spaces
 - » Access to the Heart of Downtown Areas
 - » Designed to Integrate with Existing Transportation Systems and Economies

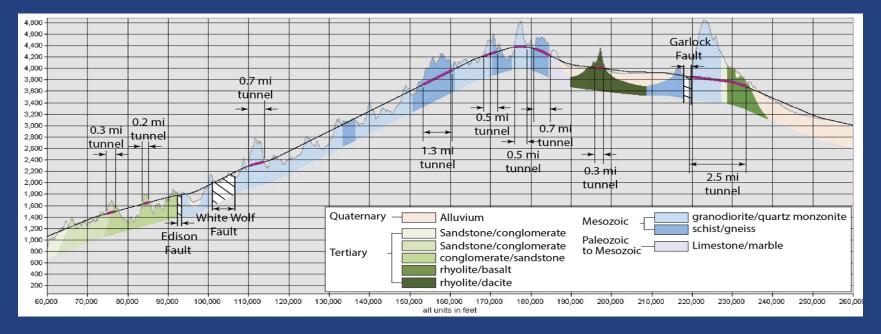


ENGINEERING CHALLENGES


ENGINEERING CHALLENGES: MAJOR INVESTIGATION SEGMENTS

Three segments for investigation.
» Gilroy to Los Banos (Pacheco Pass)
» Bakersfield to Palmdale
» Palmdale to Burbank

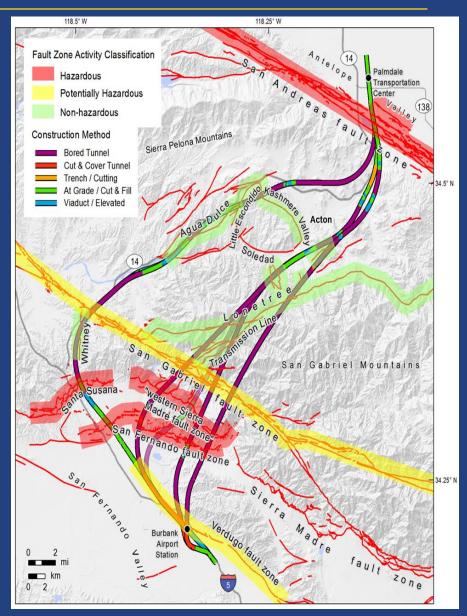
ENGINEERING CHALLENGES: SEISMIC FAULTS BAKERSFIELD TO PALMDALE



ENGINEERING CHALLENGES

- Overall tunneling in variable geology
- Seismically active areas with multiple fault crossings
- Investigation on ground water impacts
- Permitting, investigations and tunneling in environmentally sensitive areas

Expanded geotechnical investigations



ENGINEERING CHALLENGES: PALMDALE TO BURBANK – FAULTS AND CROSSINGS BY HIGH-SPEED RAIL ELEMENTS

- 4 Major Fault Zones
- 6 Significant Secondary (Sympathetic) Fault Splays

Fault Zone Crossing Details:

Fault Zone	Designation (TM 2.10.6)	Average width (ft)	No. of strands	Mean Displ (D) (ft)	Sense of Slip
San Gabriel Fault Zone	Potentially Hazardous	5,000	4 +	4.8	Strike-slip
Sierra Madre Fault Zone (West)	Hazardous	2,500	2 +/-	4.4	Reverse
Sierra Madre Fault Zone (San Fernando Fault)	Hazardous	3,000	2 +/-	2.0	Reverse
Verdugo Fault	Potentially Hazardous	3,600	2 +/-	2.6	Reverse

SEISMIC PERFORMANCE CRITERIA

• No Collapse Performance Level Objectives

- » Limit structural damage and prevent collapse during and after a Maximum Considered Earthquake (MCE)
 - No collapse
 - Safe evacuation of passengers and personnel
 - No flooding or mud inflow for underground structures

Operability Performance Level Objectives

- » Protect track structure so that disruption of service is minimal following a Operating Basis Earthquake (OBE).
 - No derailment. Trains can safely brake to stop
 - Rail deformation and stresses limited
 - No concrete spalling or measurable deformations
 - No rocking of bridge foundations
 - Resumption of normal service in a few hours
 - Safe performance during aftershocks

PROPOSED LIDAR BASED STUDY AND MODEL

Proposed LiDAR Study – Assess Potential Geohazards

- 10 KM swath of airborne LiDAR flown
- Develop digital elevation model to serve as top of 3D geological and structural model
- LiDAR model to be incorporated into Fledermaus interactive 4D geospatial model for processing & analysis
- End product better intel for planned geotechnical exploration
- Note subsidence areas

HSR vs. Highway Structures

Deformation and displacement control

- HSR Heavier superstructure
 - > Higher inertial force demand
- Larger stiffness of substructure
 - Larger plastic hinge moment for foundation
- Stress on tracks control
 - Track-Structure-Interaction (TSI)
- Train stability (derailment) control
 - Dynamic Vehicle-Track-Structure Interaction (DVTSI)

Seismic Performance Criteria

Caltrans Bridges

CHSR Type1 Structures

Bridge	Seismic Hazard	Post Earthquake	Post Earthquake	Two levels of seismic performance criteria			
Category	Evaluation Level	Damage Level	Service Level	Performance			
	Functional	Minimal	Immediate	Level &	Performance Objectives	Acceptable Damage	
Important -	Safety	Repairable	Limited	Design			
Ordinary	Safety	Significant	No Collapse	Earthquake			
				Operability	-Elastic structural response	- Minor inelastic	
				Performance	-No derailment	behavior, no spalling.	
				Level (OPL) &	- Structure and track designed	- No damage to HST	
				Operating Basis	to comply with Track-	track, track support, and	
				Earthquake (OBE)	Structure Interaction	rail fasteners	
				No Collapse	-No collapse	Significant yielding with	
	Ć			Performance	-Occupants safely evacuate	no collapse	
				Level (NCL) &			
				MCE			
		a a a					

Challenges(Very Tall Bridges at High Seismic Zone):

- Continue to operate at OBE without derailment.
- OBE combined with Track-Structure-Interaction without damaging tracks.

2016 PEER ANNUAL MEETING - BERKELEY, CALIFORNIA

Challenge Looking Ahead

- Operating Basis Earthquake(OBE)
 - Stringent deformation and displacement
 - Combination with Track-Structure-Interaction
 - Results in Heavier and stiffer structure
- Maximum Considered Earthquake(MCE)
 - Displacement-based seismic design criteria
 - Result in flexible structure with high ductility
 - Result in large residue deformation and displacement

Area of Interest for research

- Address OBE & MCE events
 - Energy dissipation, Base Isolation
- Stop train operation during OBE & MCE
 - Earthquake Early Warning and Detection Systems (EEWDS)

Area of Interest for research

Tunnel

- Ground motion effect on tunnel
- Fault directly crossing tunnels
- New Technologies
 - LiDAR to identify new fault
 - Aerogravity/Aeromagnetic technologies on geotechnical and tunnel design

THANK YOU

Kevin Thompson, Director of Engineering (916) 330-5638 *kevin.thompson@hsr.ca.gov*

Headquarters California High-Speed Rail Authority 770 L Street, Suite 1160 Sacramento, CA 95814 www.hsr.ca.gov

facebook.com/CaliforniaHighSpeedRail

twitter.com/cahsra

youtube.com/user/CAHighSpeedRail