A DAMAGE MODEL FOR STRUCTURES WITH DEGRADING RESPONSE

Principal Investigator: Filip C. Filippou, UC Berkeley Student Investigator: Thanh N. Do, UC Berkeley

PEER Annual Meeting, January 28-29, 2016

Objectives

- ► To present a new damage model for the simulation and assessment of existing and new structures under extreme loading conditions
- To formulate the model from rational rules of mechanical behavior with as few ad-hoc assumptions as possible
- ► To obtain adequate accuracy, consistency, numerical robustness, and computational efficiency to meet the challenge of large-scale simulations in performance-based earthquake engineering

Formulation

- \blacktriangleright The model defines the force-deformation relation s-e and the damage index d.
- ► The formulation is based on continuum damage mechanics: undamaged effective space \bar{s} -e and damaged physical configuration s-e.
- ► The effective response is based on 2 models: plasticity model and hysteretic model.

Effect of Damage Parameters

▶ 6 damage parameters

Parameter	Description	Feature
	Description	- Caluic
C_{d0}	Threshold coefficient	Initation of damage
C_{d1}	Ductility coefficient	Ductility or complete strength loss
d_{p1}	Damage scale parameter	Intensity of damage
d_{p2}	Damage shape parameter	Rate of damage
C_{cd}	Damage coupling coefficient	Strength loss interaction in +ive and -ive
C_{wc}	Cyclic degradation coefficient	Cyclic degradation from repeated cycles

- Can specify unequal parameters to simulate asymmetry in +ive and -ive

(a) Effect of C_{d0}

(d) Effect of d_{p2}

(b) Effect of C_{d1}

(e) Effect of C_{cd}

(c) Effect of d_{D1}

(f) Effect of C_{wc}

 $C_{wc} = 0$

 $C_{wc} = 0.3$

Summary of Features

The proposed model is able to capture the following:

- Hysteretic behaviors and failure mechanisms of structural components
- Progressive strength and stiffness degradation in the response
- Cyclic and in-cycle degradation
- Dependency of damage on cumulative energy and deformation
- Continuously updated damage profile given by the damage indices
- ► Nonlinear softening behavior
- Strength degradation interaction between the response in +ive and -ive
- ► Asymmetrical hysteretic behavior in +ive and -ive

0.15

0.15

Rotation (rad)

(d) Response comparison

Damage Correction Procedure

- ► The model simulates the response of a typical gravity frame system with shear tab connections (Liu et al. 2004).
- ► The monotonic backbone curve and experimental data in Fig. a-b are highlighted in FEMA P440A (ATC 2009)
- ► The damage correction procedure introduces strength and stiffness degradation to the undamaged effective response (Fig. c)

Simulations of Structural Components with Degrading Response

Rotation (rad)

(c) Damage correction

- ► Simulations of steel and reinforced concrete structural components
- ► Steel beam-to-column subassemblages (Uang et al. 2000): use the plasticity model in the effective space
 - ▷ Specimen LS1: subject to quasi-static cyclic loading (Fig. a)
 - ▷ Specimen LS2: identical to LS1 and subject to near-fault excitation (Fig. b)
- ► Reinforced concrete (RC) columns: use the hysteretic model in the effective space
- ▷ Specimen STC2 (Kanda et al. 1988): flexural-critical column (Fig. c)
- ▷ Specimen CUW (Umehara 1982): shear-critical column (Fig. d)

On-going and Future Development

- Further assessment of the model accuracy and efficiency in large-scale simulations
- Extensive calibration of the model parameters against available experimental database of structural components
- Implementation of the damage model in formulation of beam and column elements with degrading response
- Study of the response of multi-story buildings with degrading element behavior under static and dynamic loadings
- Extension of the 1d model to 3d with implementation in material constitutive modeling
- Application of the model in resilience assessment and damage evaluation of new and existing structural systems