From PBEE to Resilience: Research Challenges

Greg Deierlein

J. A. Blume Professor

Stanford University

How PBEE can enable Resilience

Assessing performance (3D's)

- buildings, bridges, other facilities
- geographically distributed systems
- communities assembly of facilities & systems

Implications of performance on recovery

- safe to occupy (shelter-in-place)
- interdependencies

Developing solutions

- quantify critical vulnerabilities (e.g., non-ductile concrete buildings, soft-story buildings, infrastructure systems)
- tools for economical evaluation and retrofit (e.g., FEMA P-807 soft-story retrofit)
- benefit-cost analysis to support public policies
- enable and facilitate design innovations

PBEE Framework - Facilities

MAF of:

- collapse
- loss > \$
- downtime > t

$$v(DV) = \iiint G\langle DV | DM \rangle | dG\langle DM | EDP \rangle | dG\langle EDP | IM \rangle | d\lambda(IM)$$

Impact

Performance (Loss) Models and Simulation

Hazard

PBEE Benchmarking Codes

Expected Risk Metrics

Risk of Collapse: 1% in 50 years Expected Annual Loss: 1% of Value

- Assessment of Loss
- Implications on Recovery
- Benchmarking Building Codes, Existing Inventory

Ref: Ramirez and Miranda

Vector of Resilience Metrics?

PBEE to Resilience

Resilience – recovery and restoration of functionality

$$E[q(t)|IM] = \sum_{i=1}^{n} \ln ds$$

$$[q(t)|DS\downarrow i] \cdot P[DS\downarrow i]$$

Burton, Deierlein, Lallemant, Lin (2015)

PBEE Framework - Systems

MAF of:

- fatalities
- loss > \$
- traffic delay > t

$$v(DV) = \iiint G\langle DV | DM \rangle | dG\langle DM | EDP \rangle | dG\langle EDP | IM \rangle | d\lambda(IM)$$

Impact

Performance (Loss) Models and Simulation

Hazard

Geographically Distributed GM's

Baker and Miller

Geographically Distributed GM's

Variability & Correlations in Sa

$$\ln Sa_{1j} = \overline{\ln Sa(M_j, R_{1j}, V_{s30,1}, T, ...)} + \sigma_{1j} \varepsilon_{1j} + \tau_j \eta_j$$

$$\text{Mean Sa: M. V s30} \qquad \text{Intra-event (site i)} \qquad \text{Inter-event}$$

Transportation Travel Time Delays (MAF)

Baker and Miller

Role of Earthquake Simulations

Comparison: Conventional GMPE versus Simulated CyberShake Hazard Models for LA

Role of Earthquake Simulations

PEER NGA-2 Database 20,000 GM records ... still not enough.

- high intensity (high M, low R)
- long duration
- near-fault pulse
- basin effects
- variability: e.g., inter- and intra-earthquake correlations

Ref: Bijelic, Chandramohan, Deierlein, Baker

Regional Resilience Simulations

Simulated Earthquake Scenarios

SCEC M8 earthquake on the southern San Andreas Fault

Utilization of simulated ground motions to assess performance

- long duration motions
- high energy at long periods
- near-fault directivity and pulse effects

Regional Impact

- Building Damage & Closures
- Displaced Residents
- Business interruption

Regional Loss Assessment

CURRENT empirical

FUTURE simulation

M. Hori, U. of Tokyo

PBEE to Resilience Framework

Individual Buildings:

- Evaluation
- Retrofit

e.g., ASCE 41

Building Ratings:

- ProbableMaximum Loss
- Other

e.g., ST-RISK

Groups of Buildings:

- Portfolio Analysis
- Regional Loss Studies
- Mitigation Studies

e.g., ATC 13, HAZUS

Casualties
Repair Costs
Downtime

PBEE Framework & Tools (NGA, OpenSees)
PEER-TBI; FEMA P-58; FEMA P-695, etc.

???

Benefit-Cost of Mitigation Measures

collapse fragilities

Seismic Retrofit Strategies

ECONOMIC VALUE OF BENEFITS:

- LIFE SAFETY assume \$2M per life
- ECONOMIC repair costs
- DOWNTIME (NOT INCLUDED)

Ref: Liel and Deierlein

Resilience of New Buildings?

Modern RC Shear Wall Residential Building

Standard (PEER TBI Design)

Direct Losses: ~15% replacement Reoccupy: ~18 months Code

Structural Enhancements

Direct Losses: ~10% replacement

Reoccupy: ~8 months

Non-structural Enhancements

Direct Losses: ~8% replacement Reoccupy: ~6 months

BOTH Structural & Non-structural

Direct Losses: ~2% replacement

Reoccupy: <1 month

Silver

Gold

Tipler, Almufti, Willford, Deierlein (2014)

Final Remarks

Extend PBEE framework

- disruption and recovery of function
- time dependent hazards and risk exposure
- regional assessments of geographically distributed interconnected systems
- Innovations to improve resilience
 - reduce damage and disruption (physical systems)
 - speed recovery (communication and information systems)
- Facilitate decision making for resilience
 - benefit-cost information to inform decisions
 - reconcile scenarios versus full probabilistic-based
 - embrace new (disruptive) technologies
- Identify needs of industry professionals and stakeholders