Civil & Construction Engineering

COLLEGE OF ENGINEERING

Tsunami Bridge Modeling Workshop

Michael H. Scott

PEER Annual Meeting

Berkeley, CA January 28, 2016

Wave Loading on Structures

- Recent natural disasters
 - 2004 Indian Ocean tsunami
 - 2005 Hurricane Katrina
 - 2011 Tohoku earthquake and tsunami
 - 2012 Superstorm Sandy
- Simulating wave loads from tsunami and storm surge essential for refining design guidelines and assessing mitigation strategies for critical infrastructure
 - Coastal bridges
 - Evacuation shelters
 - Power plants and energy facilities
- Tsunami following earthquake

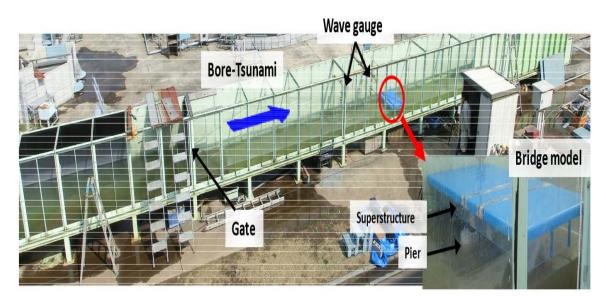
Challenges in Simulating FSI

- Simulation was a critical component to PEER's PBEE methodology
 - Led to the development and wide adoption of OpenSees
 - Experiments help validate simulation models and models guide experimental design
- Simulation of FSI for PBTE will face many of the same issues as encountered in simulating seismic response
 - How accurate do models need to be in order to be reliable?
 - Balance between accuracy and efficiency
 - Sensitivity to boundary conditions and model parameters
 - Characterization of hazard flow height and velocity
 - Can refined analyses inform estimation of loads?

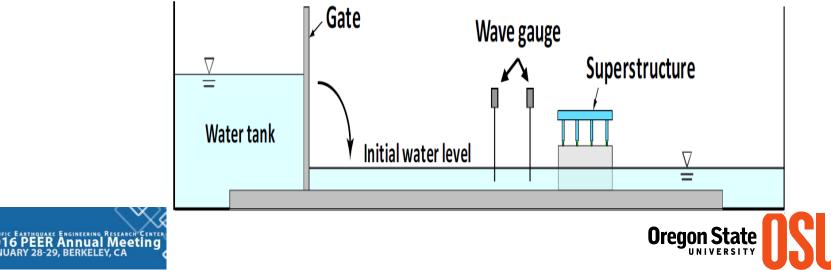
Tsunami Bridge Modeling Workshop

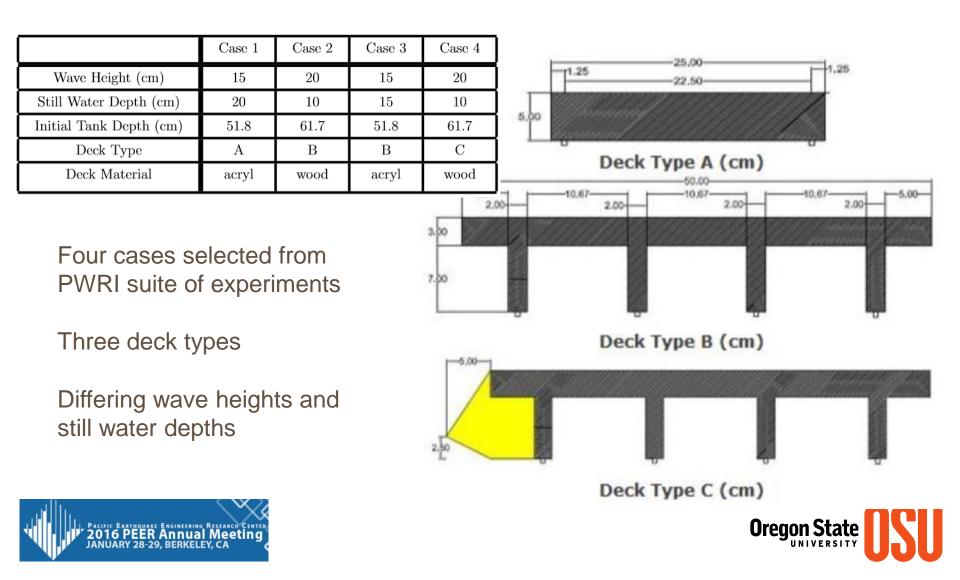
- Collaboration between PEER, PWRI, and UJNR
- 33 participants from US and Japan
- Compare simulation methods, discuss differences in results
- Identify knowledge gaps for PEER PBTE

https://secure.engr.oregonstate.edu/wiki/tsunamiworkshop/index.php



December 10-12, 2014, Corvallis, OR


PWRI Experiments


1/20 scale bridge superstructures

30 m by 1 m flume

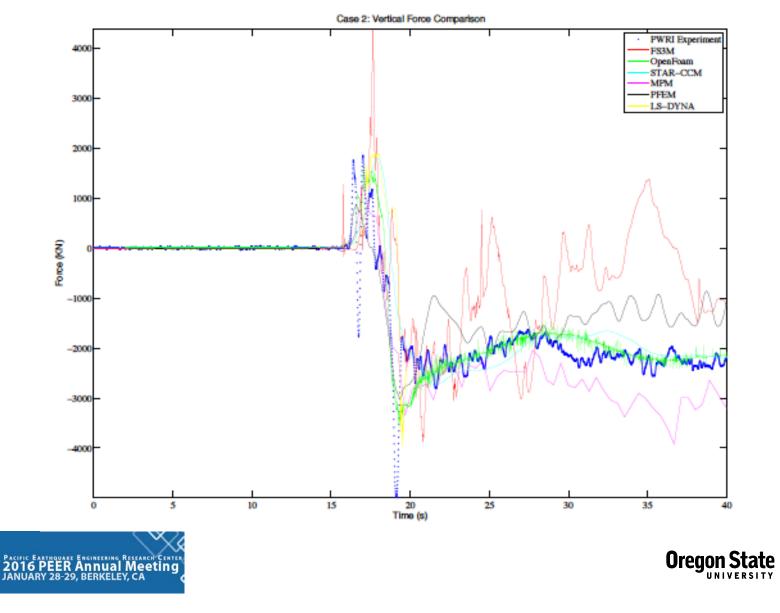
Gate release to initiate tsunami bore

Cases Simulated for Workshop

Simulation Software and Formulations

- Volume of Fluid (VOF) and Finite Element (FEM) approaches
- 2D and 3D models
- Single and Two-phase model
- Various turbulence models

Name	Numerical Formulation	Turbulence Model	Number of Dimensions	Type of Phase Model
CADMAS-SURF	VOF	$k-\epsilon$	2D	Two-Phase
FS3M	Multiple (coupled)	LES	3D	Two-Phase
OpenFOAM	VOF	$k-\epsilon$	Both 2D & 3D \sim	Two-Phase
OpenSees PFEM	FEM	N/A	2D	Single Phase
Material Point Method (MPM)	FEM	N/A	2D	Single Phase
Stabilized FEM	FEM	Implicit LES	2D	Two-Phase
GPUSPH	SPH	Sub-Particle Scale (SPS)	3D	Single Phase
LS-DYNA	FEM	LES	3D	Two-Phase
STAR-CCM+CFD	VOF	$k-\epsilon$	3D	Two-Phase



Case 2 – Total Horizontal Force

Case 2 – Total Vertical Force

Key Observations from Workshop

- 3D models generally the worth additional computational effort compared to 2D models
 - Capture localized air pockets and vortex shedding
 - Easily adapted for skewed bridge decks
 - Open source software OpenFoam (next talk)
- Use of turbulence models better captures response to high speed steady flows
- Initial/boundary conditions important, particularly with respect to gate release of water reservoir
- Additional details on workshop webpage and final report

