OpenFOAM Modeling of Tsunami Forces on Coastal Structures

Randy LeVeque Xinsheng Qin Michael Motley Frank Gonzalez Marc Eberhad Andrew Winter Hin Kei Wong

PEER Annual Meeting 28 January 2016

CIVIL & ENVIRONMENTAL ENGINEERING

UNIVERSITY of WASHINGTON -

Multi-Scale Modeling of Tsunami Forces

Community-Scale Inundation and Force

Structure-Scale Force Prediction

Detailed structural models provide insight into the dynamic fluid forces that a structure may experience to permit capacity analysis

- → **OpenFOAM: O**pen **F**ield **O**peration **a**nd **M**anipulation
- → Purposely developed for solving a wide range of fluid problems
 - Incompressible flows, multiphase flows, buoyancy-driven flows, and more
- → Complete CFD software package
 - Comes with 80+ solvers and 170+ utilities
 - Mesh Generations and Refinements
 - Data loaders for converting CAD geometries to meshes
 - Parallelization of fluid problem solutions
 - In this work, 64-256 processors were commonly used
 - Other researchers have used up to ~1000 processors
 - Will be available for use on NHERI Cyberinfrastructure in the coming months

We convert CAD *.stl files into OpenFOAM 3D Meshes

CAD Rendering

OpenFOAM Internal Mesh OpenFOAM Boundary Faces

We convert CAD *.stl files into OpenFOAM 3D Meshes

CAD Rendering

OpenFOAM Internal Mesh OpenFOAM Boundary Faces

We convert CAD *.stl files into OpenFOAM 3D Meshes

CAD Rendering OpenFOAM Internal Mesh OpenFOAM Boundary Faces

We convert CAD *.stl files into OpenFOAM 3D Meshes

CAD Rendering OpenFOAM Internal Mesh OpenFOAM Boundary Faces

Experimental Data from Flume Tests

TA7

Modifying the Geometry

By slightly modifying the geometry of the bridge, we can create scenarios where extrapolating a two-dimensional model does not accurately represent the response of the structure to wave loads.

Consider a skewed bridge:

Resulting Loading Histories

W

What about slope effects?

Fluid-air-structure interactions

Fluid-air-structure interactions

W

Fluid-air-structure interactions

Total vs. Component Responses

Front Faces at 15.25 s

Front Bay at 15.35 s

Front Faces at 15.45 sec

Bays and Front Barrier at 15.625 s

Front Faces at 15.45 sec

Bays and Front Barrier at 15.625 s

W_

Deck Impact at 15.25 s

Internal Deck Impact at 15.65 s

OpenSees/OpenFOAM Model Overview

Earthquake/Tsunami Response

