Damage Resistant Re-centering Bridge Columns: Evaluation by Shake Table Testing

by

Marc Eberhard, U Washington Steve Mahin, UC Berkeley Claudia Ostertag, UC Berkeley Marios Panagiotou, UC Berkeley José Restrepo, UC San Diego

John Stanton, U Washington

Project Manager: Matt J. Schoettler, UC Berkeley

OpenSees Support: Vesna Terzic, PEER

Students:

Gabriele Guerrini, UC San Diego Olafur Haraldsson, U Washington Will Trono, UC Berkeley

Richmond Field Lab Support:

Wes Neighbour, Lab Manager Clement Barthes, Development Engineer David Maclam, Senior lab Mechanician Nate Knight, Lab Mechanician Russ Middleton, Lab Mechanician

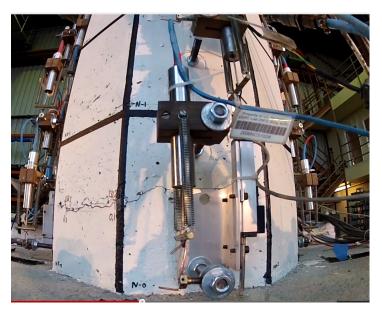
Volunteers:

Yosuke Ishihara (UC Berkeley / Metropolitan Expressway Co., Japan) Gabe Jen (UC Berkeley)

Rotana Hay (UC Berkeley)

Hammad El Jisr (PEER Intern)

Program Objective



Develop resilient bridge bent systems that:

- Re-center after a design earthquake,
- Have large lateral deformation capacities,
- Display low damage levels,
- Use conventional materials as much as possible,
- Allow pre-fabrication off-site,
- Are economical to build.

Conventional column

Damage resistant re-centering column

Materials

Damage resistance to be achieved using:

- Hybrid fiber reinforced concrete (HyFRC)
- Steel shells
- Stainless steel reinforcement
- Headed reinforcement

- Pre-tensioning with unbonded strands
- Post-tensioning with unbonded tendons or threaded bars

Test Matrix

Conventional RC column

Testing in December

- Benchmark, cast-in-place.
- Designed per Caltrans SDC v1.6
- A706 reinforcement

UC Berkeley

Steve Mahin Matt Schoettler Vesna Terzic

Precast/Prestressed column

- Precast, pre-tensioned
- HyFRC shell in the plastic hinge
- •A706 reinforcement

Univ. of Washington John Stanton Marc Eberhard Olafur Haraldsson

HyFRC column

- ·Cast-in-place, post-tensioned
- •Precast HyFRC block at the base
- A706 reinforcement
- Rocking column

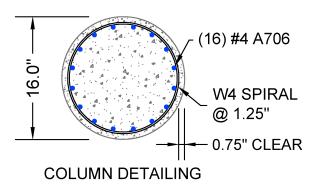
UC Berkeley

Claudia Ostertag Marios Panagiotou Will Trono

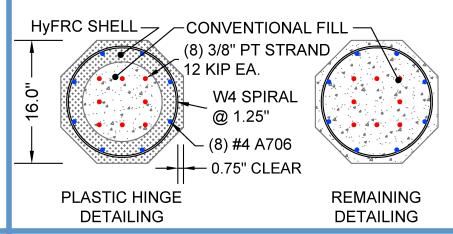
Dual steel shell column

- Precast, post-tensioned
- Hollow inner shell
- •Stainless steel reinforcement
- Rocking column

<u>UC San Diego</u> José Restrepo Gabriele Guerrini

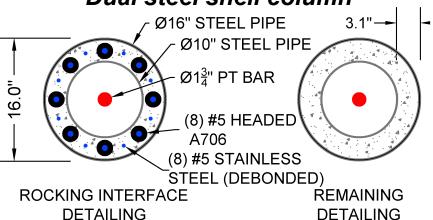


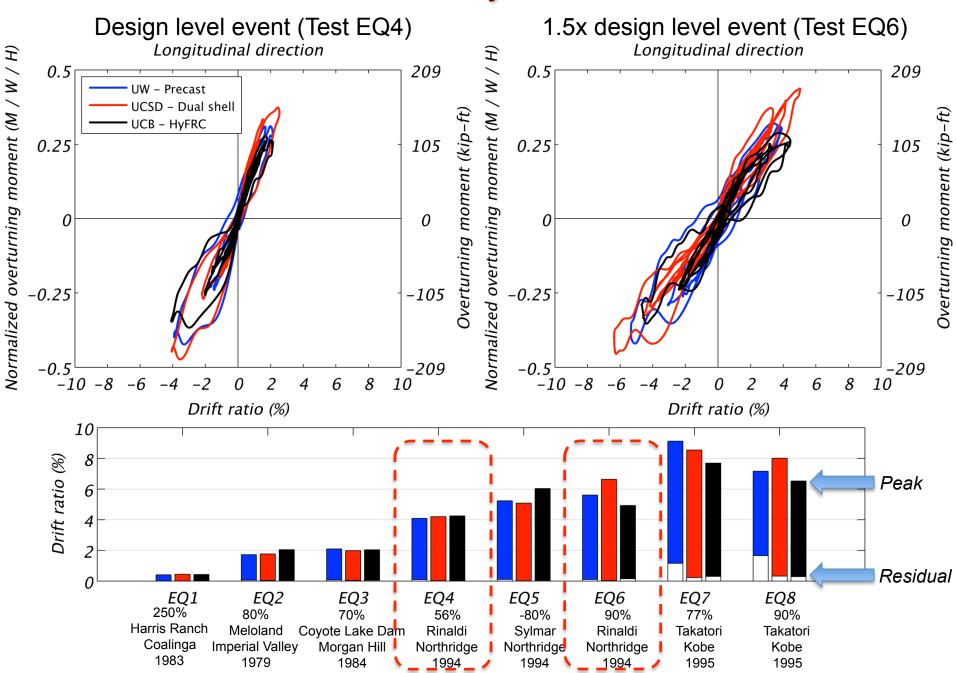
Reinforcing Details of Test Specimens



Conventional RC column

Testing in December

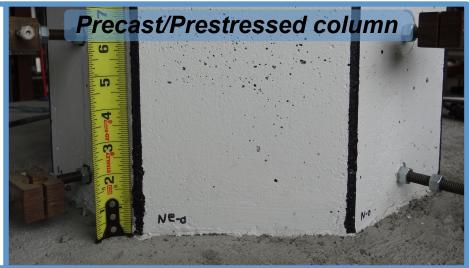

Precast/Pre-tensioned column

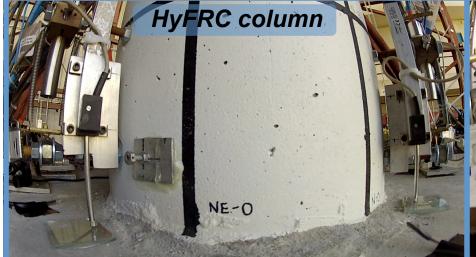

HyFRC column

HyFRC PRECAST BLOCK — CONVENTIONAL MIX — (4) Ø0.6" PT STRAND (5) #5 A706 (DEBONDED) — (10) #5 HEADED — W4 SPIRAL @ 1.25" — 0.75" CLEAR ROCKING INTERFACE REMAINING DETAILING

Dual steel shell column

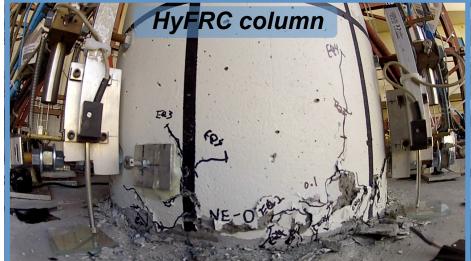
Preliminary test results




Pre-test view of the column base

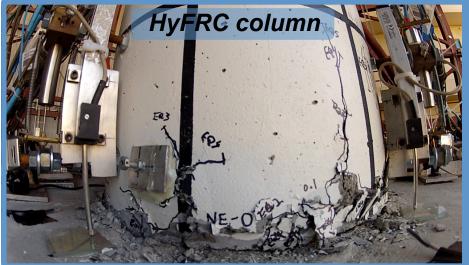
Conventional RC column and CFRP column

Testing in December


Damage: After design earthquake

Conventional RC column and CFRP column

Testing in December


Damage: After 1.5*design earthquake

Conventional RC column and CFRP column

Testing in December

Summary and Conclusions - 1

- A family of resilient bent systems has been developed.
- Shake table tests conducted to investigate seismic performance.

SEISMIC PERFORMANCE:

- All the columns re-centered almost perfectly after 1.5* design earthquake.
- No pre- or post-tensioning fractured.
- Some bars fractured at earthquake 7 (> 1.5* Design)
- Damage to concrete/grout much less than in conventional columns.

EXCELLENT PERFORMANCE IN ALL THREE COLUMNS

MATERIALS USED

- HyFRC
- Concrete
- Grout
- Pre-stressing strand
- Pre-stressing bar
- A706 rebar
- Stainless steel rebar

ONLY HyFRC IS NON-STANDARD

Summary and Conclusions - 4

CONSTRUCTION

- Some pre-fabrication in each column
- Each column used different connection methodology

CONSTRUCTION PROCEDURES NEED TO BE OPTIMIZED FOR:

- \$peed
- \$implicity

