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Background and Motivation 

 Although widely believed to be important in 
structural performance assessment, results from 
prior research have been mixed and inconclusive 
 Models used did not capture cyclic deterioration of 

strength and stiffness 

 Effect on collapse capacity has not been studied 

 Current design provisions, performance 
assessment studies and cyclic loading protocols 
do not explicitly consider ground motion duration 

 Recent large magnitude events like the 2010 
Chile and 2011 Tohoku earthquakes reinforce the 
importance of duration while providing useful 
new data 
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Objectives and Practical Outcomes 

 Assess the effects of ground motion duration on 
structural performance and collapse capacity 
using realistic models that incorporate cyclic 
deterioration 
 Determine which duration metric is best suited for use in 

PBEE framework 
 Create a benchmark long duration ground motion set 
 Identify situations where ground motion duration is 

expected to be important 

 Evaluate and propose how to incorporate the 
effects of duration into 
 The PBEE framework, in hazard characterization and 

ground motion selection 
 Building codes and design criteria 
 Cyclic loading protocols 
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Ground motion duration metrics 

 Bracketed duration 

Bracketed 
duration 

+0.05g 

-0.05g 
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Significant 
duration 

95% 

5% 

 Significant duration 

Thresholds 
 0.05g 
 0.1g 
 0.2g 

Ranges 
 5-95% 
 5-75% 
 2.5-97.5% 



Ground motion duration metrics 

 Arias Intensity 

 𝐴𝑟𝑖𝑎𝑠 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝜋

2𝑔
 𝑎(𝑡)2𝑑𝑡
𝑡𝑚𝑎𝑥

0
 

 Cumulative Absolute Velocity 

 𝐶𝐴𝑉 =   𝑎(𝑡)
𝑡𝑚𝑎𝑥

0
𝑑𝑡 

 𝐼𝐷 (Cosenza and Manfredi, 1997) 

 𝐼𝐷 =
 𝑎(𝑡)2𝑑𝑡
𝑡𝑚𝑎𝑥
0

𝑃𝐺𝐴 × 𝑃𝐺𝑉
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Comparison of duration metrics 

Desired properties 
Bracketed 
duration 

Significant 
duration 

Arias 
Intensity 

CAV 𝑰𝑫 

Uncorrelated to common IMs 
like PGA and Sa(1s) 

     

Unaffected by scaling      

Does not bias spectral shape      

5-95% Significant duration (𝑡5−95) identified as most 
suitable duration metric 
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 Tested each duration metric by selecting long duration 
ground motion sets (based on each metric’s definition 
of duration) from a pool of ground motions 



Pilot study on Steel Braced Frame 
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Rotational Spring 

Zero-length hinge 

Modified Ibarra-Medina-
Krawinkler bilinear model 
with in-cycle and cyclic 
degradation 

Brace 

Force-based fiber element 

Giuffre-Menegotto-Pinto 
steel model with isotropic 
strain hardening and low-
cycle fatigue effects 
(Uriz and Mahin, 2004) 

Pinned 
Connection 

 Rapidly deteriorating structural system 

 Modeled in OpenSees 



Incremental Dynamic Analysis 
Results 

 Observed significant decrease in collapse capacity 
with duration 

 5-95% Significant duration (𝑡5−95) best captured 
this effect 
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40% decrease in collapse 
capacity from 20s to 100s 



Extended long duration record set 

 Earthquakes considered 
 1974 Peru 

 1979 Imperial Valley, USA 

 1985 Chile 

 1985 Michoacan, Mexico 

 1995 Kobe, Japan 

 1999 Chi-Chi, Taiwan 

 2003 Hokkaido, Japan 

 2004 Niigata, Japan 

 2007 Chuetsu, Japan 

 2008 Iwate, Japan 

 2008 Wenchuan, China 

 2010 Chile 

 2010 El Mayor Cucapah, USA 

 2011 Tohoku, Japan 

 ~2000 horizontal record 
pairs acquired in total 

 Ground motions filtered and 
baseline corrected (Boore 
and Bommer, 2005) 

 Ground motions screened 
out 
 Mean PGA < 0.1g 

 Mean PGV < 10cm/s 

 𝑡5−95 < 45s 

 Maximum of 25 record pairs 
retained from each event 

 106 record pairs remained 
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Two sources of long duration 
ground motions 

Long Rupture 

2011 Tohoku Earthquake, 

(Mw 9.0) 

Site Effects 

2010 El Mayor Cucapah 
Earthquake, (Mw 7.2) 
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Spectrally Equivalent Short 
Duration Set 

 For every long duration ground motion, a corresponding 
short duration ground motion was chosen from the PEER 
NGA West 2 database with a similar spectral shape 

 Created as a control for the effect of spectral shape 
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Comparison of ground motion 
durations 
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Concrete Bridge Pier Model 

 Concrete column tested by PEER and 
NEES at UC San Diego was modeled 
in OpenSees as an SDOF system 

 Reasons for choice of structure 
 Study effect of duration on 

representative bridge column 
 SDOF systems facilitate parametric 

studies without higher mode effects 
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Rotational Spring 

Zero-length hinge 

Modified Ibarra-Medina-Krawinkler 
peak-oriented model with in-cycle 
and cyclic deterioration 

 

 

 

Initial hysteretic energy 
dissipation capacity 𝑬𝒕 = 𝜸𝑴𝒚𝜽𝒚 

Deterioration governed by 
dissipated hysteretic energy as 

 𝛽𝑖 =
𝐸𝑖

𝐸𝑡− 𝐸𝑗
𝑖
𝑗=1

𝑐
 

 𝐹𝑖 = (1 − 𝛽𝑖)𝐹𝑖−1 



Calibration to test data 
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Period = 1.1s 
 

𝛾 = 120 



Effect of duration and 𝛾 on 
hysteresis plots 

 Entire long duration set, spectrally equivalent short duration set and FEMA 
P695 Far Field sets used in analysis 
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Typical long duration ground 
motion at collapse 

Typical short duration ground 
motion at collapse 

 Value of 𝛾 expected to control effect of duration on collapse capacity 

 Analysis repeated for different periods and different values of 𝛾 

Same long duration ground 
motion at collapse with low 𝜸 



Collapse capacity vs. 𝑡5−95 
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𝛾 = 40 

𝛾 = 400 

~35% decrease in collapse capacity from 20s to 100s 

~15% decrease in collapse capacity from 20s to 100s 



𝛾 vs. b 
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ln 𝑆𝑎 = ln (𝑎) − 𝑏 𝑙𝑛(𝑡5−95) 

𝑆𝑎 = 𝑎 𝑡5−95
−𝑏 



Observed values of 𝛾 
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Concrete column calibrations from Haselton et al., 2008 
Based on PEER Structural Performance Database 



Effect on Mean Annual Frequency 
of Collapse 
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0.35g (22% decrease) 

MAF of collapse 
2.3x10-6 

(~90% larger) 

MAF of collapse 
1.2x10-6 



Effect of spectrally matching ground motions 
on collapse capacity 
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Summary of findings 

 Duration can have a significant impact on the 
collapse capacity of structures 
 Depends on hysteretic energy dissipation capacity 
 Reduction in collapse capacity from 20s to 100s 

 Braced frame example: ~40% 
 Concrete column example: ~35% (~90% increase in 

MAF of collapse) 

 Use of realistic (deteriorating) structural 
models and careful ground motion selection 
allowed for rigorous assessment of duration 
effects 

 5-95% significant duration is most effective 
among common metrics used to quantify 
ground motion duration 
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Future work 

 Study the sensitivity of duration effects on 
other parameters used to characterize 
SDOF systems 

 Extend the study of SDOF systems to 
MDOF bridge archetype models 

 Evaluate methods of incorporating effects 
of duration into: 

 The PBEE framework 

 Building codes and design criteria 

 Cyclic loading protocols 
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Thank you! 
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