OPPORTUNITIES FOR ADVANCING TECHNOLOGY-NEUTRAL AND PERFORMANCE-BASED DESIGN METHODS FOR THE SEISMIC DESIGN AND REGULATION OF SSCs AT NUCLEAR POWER PLANTS

October 26, 2012

Presentation at the 2012 PEER Annual Meeting Berkeley CA

Robert J. Budnitz

Earth Sciences Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA <RJBudnitz @ LBL.gov>

1

LBNL now has 5 NRC-sponsored research projects

- "An advanced framework for risk-informed seismic regulation of NPPs"
- "Advanced SSI modeling and simulation"
- "Correlations in the seismic response of NPP structures and equipment"
- Advances in base isolation technology for NPPs"
- "Evaluation of NRC seismic regulation of SMRs (small modular reactors)"

Plus another NRC project that is not research

- Each operating NPP has been asked by the NRC to do a re-evaluation of its seismic safety.
- The NRC and the industry are cooperating on writing the guidance that will govern this reevaluation.
- I (Budnitz) am the NRC staff's principal consultant on writing a major part of this guidance.
- The guidance will be out in late November.

A new framework: What is the issue?

- We design SSCs (structures and components) to withstand earthquakes.
- What are the design requirements or guidance?
- What analysis is required to confirm acceptability?
- What acceptance criterion is used?
- Is this process "risk-informed"? "performancebased"?

Basic framework for seismic-structural regulations (from ASCE 43-05)

- <u>Target performance goal</u>: 10⁻⁵ per year
- "<u>Success</u>" vs. "failure" --- "onset of significant inelastic deformation" (OSID)
- Applies to <u>one individual structure or component</u>
- <u>Level of confidence</u> --- requirements seek <u>mean confidence</u>, which is typically between 80% and 90% confidence for these design problems
- <u>Analysis</u> --- determination of OSID: combination of realistic analysis and imposition of conservative assumptions

Design approach -- seismic-structural design

- Applies to <u>one individual structure or component</u> ٠
- Begin with "design basis earthquake": 10⁻⁴ per year ٠ (site-specific probabilistic seismic hazard analysis)
- **Design rules:** deterministic design rules with some conservative ۲ assumptions (prescribed in ASCE 43-05)
- Based on <u>experience</u> from existing NPP structures and components ۲ using above design rules, an individual SSC will generally have:
 - − ≤ about 1% prob. of failure at DBE
 - < about 10 % prob. of failure at 150% DBE</p>
- NRC objective is that: ٠

Conditional prob. of core damage < about 1% at 1.67 DBE

(if DBE is 0.30g, then 1.67 times DBE means 0.50g)

Observations

- Approach seems to be adequately conservative:
 - Target performance goal 10⁻⁵ per year
 - Applies to one individual structure or component
 - Each SSC designed starting with DBE (10⁻⁴/year) has
 1% prob. of "failure" at DBE
 - Each SSC has <<u><</u> 10% prob. of "failure" at 150% DBE, recurrence say ~ 3 x10⁻⁵ per year
 - "Failure" is defined as "OSID"
- Specific design rules constrain innovation, even for SSCs similar to those already in our plants.
- "New" types of SSCs may or may not fit into this scheme.
- New design solutions for "old" SSCs may or may not fit.

- Not fully "performance-based" specific deterministic design rules
- One SSC at a time as if each SSC is a "singleton" for Core Damage
- "Failure" = "onset of significant inelastic deformation"

 a long way from actual "failure to perform the safety function"
 for most SSCs
- Choosing a certain DBE (10⁻⁴/year) plus specified design rules may not be optimum.

- Not fully "performance-based" specific deterministic design rules
 Allow designers more design flexibility -- burden on analysis of
 actual performance
- One SSC at a time as if each SSC is a "singleton" for Core Damage
- "Failure" = "onset of significant inelastic deformation" a long way from actual "failure to perform the safety function" for most SSCs
- Choosing a certain DBE (10⁻⁴/year) plus specified design rules may not be optimum.

- Not fully "performance-based" specific deterministic design rules
 Allow designers more design flexibility -- burden on analysis of
 actual performance
- One SSC at a time as if each SSC is a "singleton" for Core Damage Allow use of systems knowledge to influence strictness of acceptance criteria
- "Failure" = "onset of significant inelastic deformation"

a long way from actual "failure to perform the safety function" for most SSCs

 Choosing a certain DBE (10⁻⁴/year) plus specified design rules may not be optimum.

- Not fully "performance-based" specific deterministic design rules
 Allow designers more design flexibility -- burden on analysis of
 actual performance
- One SSC at a time as if each SSC is a "singleton" for Core Damage Allow use of systems knowledge to influence strictness of acceptance criteria
- "Failure" = "onset of significant inelastic deformation"

a long way from actual "failure to perform the safety function" for most SSCs

Allow more realistic definition of "failure", case-by-case

 Choosing a certain DBE (10⁻⁴/year) plus specified design rules may not be optimum.

- Not fully "performance-based" specific deterministic design rules Allow designers more design flexibility -- burden on analysis of actual performance
- One SSC at a time as if each SSC is a "singleton" for Core Damage Allow use of systems knowledge to influence strictness of acceptance criteria
- "Failure" = "onset of significant inelastic deformation"

a long way from actual "failure to perform the safety function" for most SSCs

Allow more realistic definition of "failure", case-by-case

 Choosing a certain DBE (10⁻⁴/year) plus specified design rules may not be optimum.

Allow designers to select whatever DBE they wish -- burden on analysis of actual performance

Full Use of PRA ("risk-based")

- Still not ready for this.
 - Seismic PRAs have large numerical uncertainties.
 - The structure of a Seismic PRA is more robust than the numbers. [True of PRA generally!]
 - Designers at-the-bench cannot now be trusted with too much flexibility as they execute their designs.

Full Use of PRA ("risk-based")

- Still not ready for this.
 - Seismic PRAs have large numerical uncertainties.
 - The structure of a Seismic PRA is more robust than the numbers. [True of PRA generally!]
 - Designers at-the-bench cannot now be trusted with too much flexibility as they execute their designs.
- Possible path forward: Introduction of Seismic PRA into the design process with a very high burden of proof for the analyst
- First inroads could be in defining "failure" more realistically than "OSID", based on probabilistic fragility curves.
- Use of seismic PRA for relaxations for some SSCs, especially perhaps for some structures

Broader insights

 Full "performance-based" design (based on a PRA-type "performance" criterion) is still not ripe in this technical area.

Broader insights

- Full "performance-based" design (based on a PRA-type "performance" criterion) is still not ripe in this technical area.
- The structure of the PRA may be a more reliable basis for changes in design approaches than the numbers themselves.