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Research developments
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@ Last 20 years have seen considerable progress in
understanding, analyzing, and designing for lateral
spreading effects.
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Simulation
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@ Hierarchy of 2-D and 3-D modeling capabilities
developed; proprietary, commercial, and open source.
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Validation
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@ Dynamic centrifuge, shake table, and field tests
addressed knowledge gaps for deep foundations.
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Development of design guidance
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@ Parametric studies to evaluate ESA methods against
case histories, physical modeling data, and nonlinear
dynamic analyses.
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Design practice for lateral spreading
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@ Steps for design or performance evaluation of a bridge
include:
= Design/evaluate for inertia loading that would occur
in the absence of liquefaction.

= Evaluate the potential for liquefaction and
associated ground displacements.

= Design/evaluate for the lateral spreading and
inertia demands that would occur if liquefaction is

triggered.




Local and global analyses
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@ Bridge pinning effects on ground displacements can be
modeled using different approaches for different local
or global analysis methods.
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Estimating lateral spreading displacements

%

N

@ Three key evaluation steps
= Site characterization
= Liquefaction triggering
= Ground deformations

@ Site characterization and evaluation of liquefaction
susceptibility
= Use appropriate mix of SPT and CPT
» Detailed cross-section showing in situ data

m Key factor: spatial extent and continuity
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Liquefaction Triggering
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@ Potential for liquefaction triggering in susceptible soils
s Comparison of CSR (Seed & Idriss 1971) and CRR
= For CRR, use Youd et al (2001) for now

+ Until consensus is reached in profession
+ Cetin et al (‘'04), Idriss & Boulanger (‘'06), Moss et al ('06)

= Fines consideration
» Boulanger and Idriss (2006)
m Silts and clays with PI>7, treat as cohesive soil
m For PI<7, evaluate using SPT/CPT procedures
= Or do lab testing
+ Bray and Sancio (2006)
s For 7<PI<20, do lab testing
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Consequences of Liquefaction
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@ Residual strength

= Instability of a slope or embankment due to loss of
shear strength in liquefied zones.

@ Strains
= Lateral spreading of level or sloping ground

@ Displacements

s Settlement due to one-dimensional reconsolidation
of liquefiable soil
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Residual strength estimation
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@ Estimation of residual shear strength of a liquefied soil
for slope/embankment instability investigation
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Liquefaction-induced ground displacements
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@ Free-field lateral spreading displacement can
be estimated using different approaches

= Empirical relationships

+» Specific to the cases that relationships were developed
* Youd et al. 2002, Bardet et al. 2002, Rauch & Martin 2000

= Integration of shear strain profiles with depth

» Estimated in conjunction with SPT- and CPT- based
liquefaction analysis (Zhang et al. 2004)

= Newmark sliding block analyses
» Can depend heavily on the residual strength

= Nonlinear dynamic analyses

N
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Pile analysis for lateral spreading case
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@ ESA with imposed soil displacements

W,

= Soil displacement v

+ Magnitude o "’;’
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= Soil springs | e L T
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= Inertial and lateral spreading loading combinations

11/27/12 &) PEER



Pile analysis for lateral spreading case
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@ p-y behavior in liquefied sand
@ ESA requires crude approximation of complex behavior
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Pile analysis for lateral spreading case
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@ Reduction of ultimate lateral loads in the overlying
or underlying nonliquefied layers
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Pile analysis for lateral spreading case
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@ Pile group interaction effects

= Apply group p-multipliers underlying
nonliquefied layer

= No p-multiplier for liquefied soil
= NO group effects for nonliquefied crusts

c/c pile spacing (diameters)

p-multiplier

1 (Mokwa, 2000)
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Pile analysis for lateral spreading case
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@ Loads from nonliquefied
crusts

= Passive earth pressure s

= Practical problems, case B
will result smaller e
foundation loads. sand

= Controlling mechanisms Case A
depends on size and
number of piles, thickness o
of crust
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Displacement demands
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@ Combined lateral spreading & inertia loading:
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Displacement demands
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@ Combined lateral spreading & inertia loading:
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Displacement demands

@ Lateral spreading with deck restrained
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Design of piles in Approach Embankments
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@ Pile pinning analyses

= Slope stability analyses of the embankment for a
range of restraining forces

= Consider range of failure surfaces
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Design of piles in Approach Embankments

@ Compatibility of embankment and pile displacement

Pile founaation's
pushover response

Pile foundation's
equivalent constant
restraining force

Embankment slide mass
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Global bridge response
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@ Provide more realistic evaluation of the distribution of
force and displacement demands than from local
analyses of individual bent or frames

@ Ordinary bridge without liquefaction effect
= Linear elastic- ESA
= Linear elastic dynamic analysis for complicated case

@ Global analyses for the effect of liquefaction are
warranted when the subsurface conditions and
expected liquefaction-induced ground displacement
vary substantially along the bridge alignment
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Global bridge response
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2010 Chile Earthquake




Darfield Earthquake
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Thank You...



