Tsunami – General Issues

Harry Yeh School of Civil & Construction Engineering Oregon State University

PEER 2011 Annual Meeting, October 1, 2011

Tsunami Hazard Reduction

 Because mega tsunamis are rare and because forewarning of these events is possible (although the lead time can be very short), the primary mitigation tactic to date has been
EVACUATION – distinct difference from earthquake hazard.

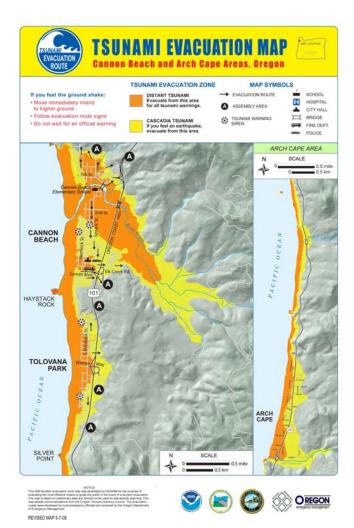
Phenomenon	Time Scale	Pressure Head	Forewarning Time
River Flood	days	< 3 meters	a few days
Hurricane/Storm Surge	hours	< 5 meters	several days
Storm-Generated Wave	seconds	< 10 meters	several days
Tsunami	minutes	< 10 meters	minutes to hours
Earthquake	seconds	N/A	none to seconds

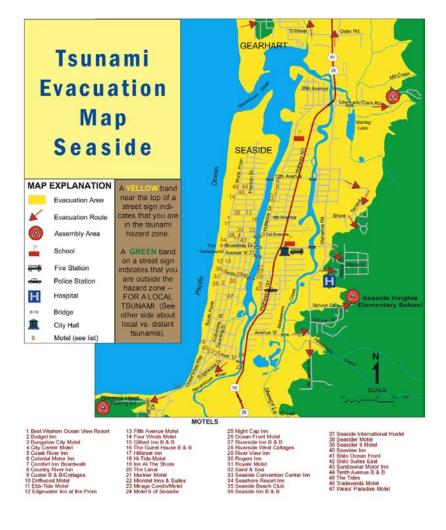
Time and loading scales of various coastal hazards

- High-consequence low-frequency hazard: saving human lives is the priority.
- The tactic for tsunami hazard reduction is distinct from that of earthquake hazard.

Tsunami Hazard Reduction by Evacuation

- Effective Evacuation.
 - Development of an effective warning system
 - Inundation and evacuation mapping
 - Education for tsunami awareness


Tsunami Detection by DART Buoys (NOAA)



All Hazard Alert Broadcasting, Long Beach, Washington

Tsunami Hazard Reduction by Evacuation

- Development of an effective warning system
- Inundation and evacuation mapping
- Education for tsunami awareness

Tsunami Hazard Reduction by Evacuation

- Development of an effective warning system
- Inundation and evacuation mapping
- Education for tsunami awareness

Education is not straightforward.

Knowledge alone is not enough, and potentially causes an adverse effect.

How can we convince and <u>lead</u> people to evacuate from the tsunami threat zone in a short time?

Tsunami Hazard Reduction by Protection

- Coastal structures for tsunami mitigation.
 - Tsunami Seawalls; Breakwaters.
 - Tsunami Evacuation Structures.
 - Tsunami Berms.

10 m tall tsunami seawall in Okushiri, Japan

Tsunami Evacuation Tower in Nishiki, Japan

Tsunami Evacuation Berm in Okushiri, Japan

Tsunami Hazard Reduction by Protection

- It is unrealistic in the US to construct large tsunami seawall and breakwater to protect every coastal community.
- Yet, we still need to consider tsunami resistant design and construction for **critical coastal structures**.

Diablo Canyon

Critical Coastal Infrastructures and Facilities

Tsunami Induced Fires Scenes of the Japan Tsunami one day after

Photos by Satake: March 12, 2011

The March 2011 East Japan Tsunami: Onagawa

Photo by Satake: March 12, 2011

The March 2011 East Japan Tsunami: Onagawa

Photo by Satake: March 12, 2011

The March 2011 East Japan Tsunami: Onagawa

Photo by Satake: March 12, 2011

Tsunami impacts are substantially affected by the surroundings Tsunami impacts are substantially affected by the surroundings

This resembles engineering considerations of wind loadings on high-rise buildings

Rapid Response and Relief Mission are Critical

The March 11 2011 East Japan Tsunami

No water, no food, and no heat and blankets for more than one week!

- Rugged mountain geography.
- Lack of gasoline for automobiles.
- Lack of communication means.
- Japanese top-down system.

The post-tsunami rapid response and relief mission are critical.

Performance-Based Earthquake Engineering (PBEE)

(adapted from G.C. Deierlein)

- 1. Seismic Hazard Analysis Site \rightarrow Intensity Measure (*IM*)
- 2. Structural Analysis

IM \rightarrow Engineering Demand Parameter (*EDP*)

3. Damage Assessment

 $EDP \rightarrow Damage Measure (DM)$

4. Loss & Risk Analysis

 $DM \rightarrow Decision Variable (DV)$

 $\lambda(\overrightarrow{DV}) = \iiint G \left\langle \overrightarrow{DV} \middle| \overrightarrow{DM} \right\rangle \middle| dG \left\langle \overrightarrow{DM} \middle| \overrightarrow{EDP} \right\rangle \middle| dG \left\langle \overrightarrow{EDP} \middle| \overrightarrow{IM} \right\rangle \middle| d\lambda(\overrightarrow{IM})$ $\lambda(\overrightarrow{IM}): \text{ exceedence frequency for } \overrightarrow{IM}$ $\lambda(\overrightarrow{DV}): \text{ probabilistic description of the performance metrics}$ $G \left\langle A \middle| B \right\rangle: \text{ conditional probabilities for the methodology components}$

Tsunami Version

1. Tsunami Hazard Analysis

Area \rightarrow Tsunami Inundation Measure (*TM*)

2. Damage Assessment

 $TM \rightarrow$ Damage Measure (DM)

3. Loss & Risk Analysis

 $DM \rightarrow$ Decision Variable (DV)

$$\lambda(\overrightarrow{DV}) = \iint G\left\langle \left. \overrightarrow{DV} \right| \left. \overrightarrow{DM} \right\rangle \right| \, dG\left\langle \left. \overrightarrow{DM} \right| \left. \overrightarrow{TM} \right\rangle \right| \, d\lambda(\overrightarrow{TM})$$

 $\lambda(\overline{TM})$: design exceedence for \overline{TM} $\lambda(\overline{DV})$: description of the damage metrics $G\langle A|B \rangle$: conditional probabilities for the methodology components

TM – Tsunami Inundation Measure

- Inundation Depth
 - Maximum
 - Time history: how quick and how long
- Flow Velocity
 - Maximum
 - Time history: how quick and how long
- Position of Interest
 - Elevation & distance from the shore
 - Terrain & surrounding buildings and infrastructures
 - Debris & fire sources

TM – Tsunami Inundation Measure

- Inundation Depth
 - Maximum
 - Time history: how quick and how long
- Flow Velocity
 - Maximum
 - Time history: how quick and how long
- Position of Interest
 - Elevation & distance from the shore
 - Terrain & surrounding buildings and infrastructures
 - Debris & fire sources

Unlike earthquakes (USGS Seismic Hazard Maps), tsunami hazard maps are still under development and complex to determine.

DM – Damage Assessment

- Quasi-Steady Lateral Forces and the Line of Action
 - Hydrostatic forces
 - Hydrodynamic forces including potential damming effects due to debris accumulation.
- Water-Surge Impulsive Lateral Forces
- Debris Impact Forces and the Line of Action
- Buoyant Forces
- Moments induced by the Foregoing Forces
- Vertical Forces on Floor Elements
 - Uplift and excess weights due to flooding the floor.
- Scour, Lateral Spreading, and Soil Liquefaction

DM – Damage Assessment

- Quasi-Steady Lateral Forces and the Line of Action
 - Hydrostatic forces
 - Hydrodynamic forces including potential damming effects due to debris accumulation.
- Water-Surge Impulsive Lateral Forces
- Debris Impact Forces and the Line of Action
- Buoyant Forces
- Moments induced by the Foregoing Forces
- Vertical Forces on Floor Elements
 - Uplift and excess weights due to flooding the floor.
- Scour, Lateral Spreading, and Soil Liquefaction

But these *DM*s are more or less for structures. What about the elements for evacuation ?

DV–Loss & Risk Analysis

- Number of Casualties
- Effectiveness of Rapid Relief Missions
 - Improvement of critical supply lines, e.g. roads and bridges
 - Provision for helicopter landing pads
- Evacuation Routes and Safe Havens
- Time and Costs of the Community Recovery
- Economic Loss
- Buildings
 - Fully Operational Immediate Occupancy Life Safety Near Collapse; % Replacement
- Service Downtime
- Repair Costs

DV–Loss & Risk Analysis

- Number of Casualties
- Effectiveness of Rapid Relief Missions
 - Improvement of critical supply lines, e.g. roads and bridges
 - Provision for helicopter landing pads
- Evacuation Routes and Safe Havens
- Time and Costs of the Community Recovery
- Economic Loss
- Buildings
 - Fully Operational Immediate Occupancy Life Safety Near Collapse; % Replacement
- Service Downtime
- Repair Costs

Proposition: Design for a Tsunami Resilient Community or Facility (but not individual buildings)

- Distant Tsunami Case ($R_{max} < 2 \text{ m}$): a few hours of warning.
 - No casualty; limited but mandatory evacuation; minor flooding for a few hours; prevent small boats from tsunami damage; minimum economical impacts.
- Intermediate Tsunami Case ($R_{max} < 5$ m): 1 ~ 2 hours warning.
 - No casualty; full mandatory evacuation; flood to x m from the shoreline; some economical impacts with a few days for recovery.
- Major Local Tsunami Case ($R_{max} < 10$ m): 30 min warning.
 - Some casualty; full mandatory evacuation; damage some infrastructures and lifelines; flood to xx m from the shoreline; major but local economical impact with a few weeks for recovery.
- Catastrophic Tsunami Case ($R_{max} > 10$ m): 30 min warning.
 - Many casualty; full mandatory evacuation; total destruction up to xxx m from the shoreline; fire potential, critical tactic for this event is response and relief; need to secure lifelines.

Summary

- Primary mitigation tactic for tsunami is evacuation.
- Tsunami protection structures are needed for critical coastal infrastructures and buildings.
- PBTE must be centered around the objective of evacuation, in addition to buildings.
- Comprehensive analysis for the interaction with the surroundings is crucial.
- Engineering contributions for the rapid response and effective relief missions are important.
- Methodology development for PBTE for a resilient community and/or a critical coastal facility, instead of an individual building.