

Development of Performance Based Tsunami Engineering - PBTE

Originally submitted – Feb. 2004; Resubmitted Feb. 2005 NSF Funding: 2005-2010

Solomon Yim

Julie Young

H. Ronald Riggs (CEE)
lan N. Robertson (CEE)
Kwok Fai Cheung (ORE)
Geno Pawlak (ORE)

Gary Chock Lyle Carden

PBTE Project Outcomes

- Improvement in modeling tsunami transformation through wave breaking and inundation (Cheung)
- Improved understanding of "fluidization" or scour enhancement by increased pore pressures (Young)
- Tsunami bore loading on structural elements
 - Individual and multiple columns (shielding, etc) (Robertson)
 - Solid and perforated walls (Robertson, Riggs)
 - Uplift on floor slabs, piers and wharfs (Robertson)
- Culminating in current development of Tsunami
 Loads and Effects chapter for ASCE 7 (2016) (Chock)
 - ASCE 7-TLE Subcommittee formed February 2011
 - Bi-annual meetings (second in Oct. 2011 in Portland)
 - Objective Develop TLE chapter for ASCE 7 by June 2013

Proposed Scope of the ASCE Tsunami Design Provisions 2016 edition of the ASCE 7 Standard, Minimum Design Loads for Buildings and Other Structures

ASCE 7 Chapter 6 - Tsunami Loads and Effects

- 6.1 General
- 6.2 Definitions
- 6.3 Symbols and Notation
- 6.4 Tsunami Design Criteria
- 6.5 Tsunami Depth and Velocity
- 6.6 Design Cases
- **6.7 Hydrostatic Loads**
- 6.8 Hydrodynamic Loads
- 6.9 Waterborne Debris Loads
- **6.10 Foundation Design**
- 6.11 Structural mitigation for reduced loading on buildings
- 6.12 Non-building critical facility structures
- 6.13 Nonstructural Systems (Stairs, Life Safety MEP)
- **6.14 Site-Specific Analysis and Design Procedure Requirements**
- **6.15 Special Occupancy Structures**

Tsunami Performance Design Objectives (Concept)

ASCE Tsunami Loads and Effects (TLE) Committee

Tsunami Research Needs

- Tsunami Characteristics
 - Probabilistic Tsunami Hazard Analysis
 - Inundation models that accurately capture wave breaking, bottom friction effects, and structural impediments (buildings, etc.)
 - Time histories of h, v, hv and hv² at selected locations
 - Include both incoming and outgoing flow

Onagawa Flow Depth Time-History

Structural Response Research Needs

Loading on Structures

- Hydrodynamic loading resulting from tsunami timehistory, both incoming and outgoing flow
- Development of time-history flow in wave flumes to replace soliton waves and dam break experiments
- Effect of sediment and debris on hydrodynamic loading

Structural Response

- Develop loading time-history based on flow time-history
- Effect of "breakaway" non-structural elements
- Effect of debris damming degree of blockage
- Effect of debris impact probability of impact severity
- Non-linear structural response

Building Performance - Debris Loading

Three-Story SMRF collapsed and pushed into concrete building

Three-Story SMRF with 5 meters of debris load accumulation wrapping

Structural Survey Research Needs

- Tsunami Survey
 - Detailed recording of structural performance
 - Sampling of material properties
 - Reverse-analysis of structural response to verify tsunami loading
 - Damage transects to aid in development of fragility curves

Building Performance – Total Building Overturning

Two-Story Refrigerated Concrete
Warehouse (9000 kN deadweight) on
Bearing Piles floated at 7 m inundation
depth during inflow and then overturned
about 20 meters from original position
after floating over 2 m wall

Three-Story Concrete Retail Building (2050 kN deadweight) on mat foundation overturned during return flow when submerged in 8 m/s flow; would have toppled at only 3 m/s

Building Performance – Total Building Overturning

OVERTURNED FISH REFRIGERATION BUILDING - ONAGAWA

(SHIFTED ABOUT 20 METERS) 141°26'48,22" 38°26'26,70"

EXHIBIT .

GARY CHOCK

EXHIBIT _._ 141°26'30.80" 38°26'37.44"

GARY CHOCK

Onagawa Built Environment Captured with LiDAR

Onagawa Three-Story Steel Building Frame Survival by Load Reduction

- This three-story steel momentresisting frame exposed to 8 m/s outflow estimated from video analysis.
- At about 67% blockage of the original enclosure (33% open), the return flow is sufficient to yield the top and bottom of the second story columns with 30-cm drift of third floor (First story column is stronger section.)
- Subsequently sustained flow induced further displacement until loss of all cladding finally reduced the building's projected area. Otherwise collapse of cladded building would have occurred.
- LiDAR scan shows final 50-cm third floor drift.

Sendai Example

Sendai Example Tsunami Bore Strike on R/C Structure

Minami Gamou Wastewater Treatment Plant - subjected to direct bore impact

Minami Gamou STP

Sendai Example Tsunami Bore Strike on R/C Structure

Minami Gamou Wastewater Treatment Plant - subjected to direct bore impact

Sendai R/C Structure

Minami Gamou Wastewater Treatment Plant

Structural Fragility

- Need to develop fragility curves for structural response to tsunami loading
- Can learn from field surveys
- Must adjust for code differences in other countries

Wood Residential Building Failure

Fragility curves for coastal flooding

Christopher Jones & Associates

Comparing Low-Rise High Seismic (SMRF) vs. Max. Tsunami Loads

- Assume undamaged by Earthquake); evaluate max. capacity per Ω x required E
- Building is 25% open

Each load curve represents the sequence of hydrodynamic loading as inundation

increases during the tsunami

Financial Implications

- Cost of Tsunami Design
 - 16 prototypical buildings designed for seismic and wind
 - Redesign for various tsunami scenarios
 - Evaluate increased construction cost
- Prototypical Buildings
 - (3) 12 Story RC Office Buildings (MRF)
 - (3) 12 Story RC Residential Buildings (Shear Walls)
 - (3) 12 Story Steel Office Buildings (EBF)
 - (3) 4 Story PC Parking Structures (CIP, PT)
 - (3) 3 Story RC School Building (Bearing wall)
 - 4 Story Steel Shopping Mall (Concentric BF)

Intermediate and Special Detailing

Financial Implications

Any Questions?

