PEER Tall Building Seismic Design Guidelines Looking Back & Ahead

Ronald O. Hamburger

Senior Principal Simpson Gumpertz & Heger Inc.

October 1, 2011

PEER Annual Meeting

Discussion Items

Sponsored by Clastes Parkow Foundation Cellismia Seismis Safety Commission California Energency Management Agency Lee Angeles Department of Building and Safety

- Original Intent
- New stuff
- Feedback from Users
- Future Work

Original Intent

- Provide a complete performance-based design criteria for tall buildings that:
 - Are practical for use
 - Result in more reliable building performance
 - Provide guidance on the design and analysis of:
 - Foundations
 - Structures
 - Nonstructural systems

New Stuff

Shear (kips)

- Enhanced hysteretic behavior modeling guidance
- Relaxed "deformationcontrolled" behavior limits
- Reliability-based forcecontrolled behavior criteria
- Maximum peak transient drift limits
- Residual Drift Limits
- Story strength loss Limits
- Service level earthquake

User Feed-back

New Stuff	Used	Liked	Problem

Reliability-based Force Limits

 $F_u \leq \emptyset F_{n,e}$

- *F_u* demand obtained from statistical evaluation of analysis results
 - Limited by well-defined mechanism

$$F_u = \overline{F} + 1.3\sigma \ge 1.2\overline{F}$$

Not limited by mechanism

$$F_u = 1.5\overline{F}$$

 \$\phi F_{n,e}\$ - code capacity, using "expected" material strength

Problems

- Which behaviors are limited by yield mechanisms?
 - Shear in a moment frame beam?
 - Axial force in a column or pier?
 - Shear in a shear wall?

Problems

- 1.5 Factor seems "high"
- Sources of demand uncertainty
 - Ground motion intensity
 - Modeling
 - Material strength $\beta = 0.15$
 - Damping $\beta = 0.15$
 - Hysteretic behavior $\beta = 0.15$
 - Record to Record $\beta = 0.3-0.4$
 - Total demand uncertainty .4 .5
- Assuming these uncertainties are correct, this results in 10% failure rate at MCE

We don't know what we don't know

- Record to record variability is a function of:
 - Records selected
 - Means of scaling / matching
 - No-one really knows the "correct" method of doing this

Guidance on appropriate methods is badly needed

ATC-82 is working on the problem
. . . unlikely to solve it.

Service Level Earthquake

- Return period picked arbitrarily
 - Approximates code requirements in some cities and some site classes
 - Not picked based on cost-benefit or other defensible criteria
 - Studies justifying an appropriate return period would be helpful
- BSSC is presently evaluating this

Additional guidance needed on:

- Design of nonstructural systems
- Determination of story strength loss

Summary

- PEER TBI Guidelines represent an improvement over prior practice
- Additional work is needed

