

Pacific Earthquake Engineering Research Center

2011 PEER ANNUAL MEETING

September 30 - October 1, 2011 Berkeley, California

Advances on Dual-Steel Shell Self-centering Bridge Column Technologies

José I. Restrepo

Professor, Principal Investigator

Gabriele Guerrini

Graduate Student Researcher

University of California, San Diego

Project Description

- Development of Accelerated Bridge Construction Solutions in line with Caltrans & FHWA Goals:
 - Get in, Get out, and Stay out

- Bridge piers with improved seismic resiliency
 - Two dual-steel shell systems developed
 - Proof-concept tests to be conducted within the next 3 months

Dual-Shell Technology

Advantages

- Precast construction w/ permanent formworks
- Reduced column weight (hollow section)
- No reinforcing cage- reliance made on external shell for shear, confinement and flexural resistance away from column ends
- Reduced construction time
- External or internal hysteretic energy dissipators
- PT protection and removal
- Recentering characteristics

Energy Dissipation

Internal

- Aesthetically ok
- Hard to repair/replace

Mini BRB

External

- Easy to repair/replace
- Aesthetic mitigation needed

Self-Centering Behavior

Advantages

- Limited structural damage compared to monolithic systems
- Small residual displacements compared to monolithic case
- Operability right after strong shakes
- Added energy dissipation

Monolithic system

Shear-wall

test results

(Restrepo, Mander, Holden)

Self-centering system

Self-Centering Behavior

PT threaded rods on a flexible bearing

Post-tensioning

Top view

Construction Progress

Footing

Load Stub

Column

Shims and Mortar Bed between Column and Footing

Column + Footing Assembly

Metallic/Quartz Aggregate Mortar Bed Tooled to Ensure No Contact with External Shell

Questions?

