

Last Hurdles for Implementation of Rocking Foundations for Bridges

Bruce Kutter Sashi Kunnath **Lijun Deng** Jacquelyn Allmond Manny Hakhamaneshi

Ideas for today

- Correct misconceptions about analysis and stability of rocking and hinging systems
 - No need to analyze rocking systems as if they are fundamentally different from hinging systems
 - IDA and fragility curves show rocking systems are superior to conventional hinging systems. (Deng et al. 2011, Spectra)
- Energy dissipation and recentering
- Design implementation
 - ASCE 41 component action tables for rocking foundations
 - DDBD (Direct Displacement-Based Design)

Opensees models

– large
deformations
(corotational
transformation)

(Lijun Deng's work)

Pushover curves for rocking and hinging systems, Cr = Cy = 0.3

Makris and Kostantinidis (2001) – "rocking structures cannot be replaced by "equivalent" singledegree-of-freedom-oscillators"

If so, then neither can other yielding systems with significant axial load

Hurdle 1 - mistaken notion that rocking behavior is fundamentally different from hinging behavior.

- Both have a well defined capacity and stiffness.
- Pushover curves are very similar
- The rotation required to cause instability (i.e., the rotation at which the $P-\Delta$ moment is equal to the moment capacity) is approximately equal to the minimum of C_r or C_y . So, if $C_r = C_y$, the rotation to cause instability is the same for rocking and hinging systems.
- The one important difference is the benefit of recentering associated with rocking.

OpenSees models

(a)

 θ_{col}

P

-large deformations (corotational transformation)

(Lijun Deng's work)

Pushover curves for rocking and hinging systems, Cr = Cy = 0.3

Shear

force

(b)

Shear

force

$H_c(\mathbf{m})$	Period, T_1 (s)	C_y	C_r	$K_{\theta C}/K_R$	$L_f(\mathbf{m})$	Remarks		
Short: 3	0.3	0.3	0.4	1.0	2.64	Hinging-column system		
	0.3	0.4	0.3	2.0	1.92	Rocking-foundation system		
	0.5	0.3	0.4	1.0	2.64	Hinging-column system		
	0.5	0.4	0.3	2.0	1.92	Rocking-foundation system		
Tall: 10	0.5	0.3	0.4	1/4	8.82	Hinging-column system		
	0.5	0.4	0.3	1/1.5	6.17	Rocking-foundation system		
	1.0	0.3	0.4	1/4	8.82	Hinging-column system		
	1.0	0.4	0.3	1/1.5	6.17	Rocking-foundation system		

Table 1. Values for parametric studies

t.

 $C_y = M_{c_col}/(PH_c)$: base shear coefficient to initiate column yielding

 $C_r = M_{c_{foot}}/(PH_c)$: base shear coefficient to initiate footing rocking

 $K_{\theta C}/K_R$: elastic stiffness of the column / elastic stiffness of footing

40 pulse-like and 40 broadband motions from PEER database (Baker)

Figure 3. Spectral accelerations of unscaled ground motions: (a) 40 pulse-like motions, (b) 40 broadband motions at soil site recorded in earthquakes of Magnitude=7 and Distance=10 km, and (c) a comparison of mean spectra of two types of motions in linear scale.

Median deck drift from IDA Min(Cy or Cr) = 0.3

Figure 10. Spectral acceleration at the elastic system period vs. median maximum deck drifts for all the systems in this study. For rocking systems $C_r=0.3$; for hinging column systems $C_y=0.3$.

Hurdle 2 - mistaken notion that conventional methods for predicting drift demand are not appropriate for rocking systems.

 We show that response-spectrum-based approaches are equally appropriate (or equally inappropriate) for rocking and hinging systems.

Residual deck drift from IDA Min(Cy or Cr) = 0.3

Figure 11. Spectral acceleration at elastic period of systems vs. median residual drift ratio (Δ_{res} / H_c): (a) tall column bridges; and (b) short column bridges. The approach to obtain the median maximum drift of the deck illustrated in Figure 9 was employed here to obtain the median residual drift ratio of the deck.

Comparison of performance in broadband and pulse-like motions

Figure 13. Comparison of median maximum drift of deck of rocking and hinging systems subject to pulse-like and broadband motion suite: (a) $H_c=10.0$ m, $T_1=1.0$ s; (b) $H_c=3.0$ m, $T_1=0.5$ s. Legend notations: PL= pulse-like motions; BB= Broadband motions.

Fragility Curves – pulse like motions

Hurdle 3– misconception that a rocking system is less stable than a hinging system

- For the analyses presented, rocking systems are more stable than hinging systems.
 - It all comes down to the hysteresis curve
 - Capacity
 - Stiffness
 - Damping
 - Recentering
 - Rocking systems have recentering

The difference in behavior comes down to the shape of the hysteresis curve.

Figure 13. Load-displacement hysteresis for different energy-dissipating devices: (a) an elastic column, (b) an elastic-perfectly-plastic column, (c) a rocking footing on a rigid ground (with zero hysteretic and radiation damping), (d) a controlled rocking building system [33], and (e) experimental data from a rocking-foundation model with $L_f/L_c=30.2$.

Other Hurdles – rocking may not be appropriate for poor soils without improvement

Rocking on liquefiable soils with and without piles (Allmond et al. 2010)

Other Hurdles

- Lack of design methods partly solved by showing that conventional methods also apply to rocking systems.
 - ASCE-41 work
 - Credit Mark Moore, ZFA, among others
 - Developing Component Action Tables for Rocking systems
 - DDBD
 - Need to carefully characterize the damping and stiffness properties of the hysteresis loop.

ASCE 41 – Rehabilitation of Existing Buildings

component action tables

e

Modeling Param	eters and Nume	erical Acceptan	ce Criteria	for Nonline	ear Proced	ures				
Shallow foundat	ion rocking/ove	rturning								
Condition 1. Roc	king dominates	over sliding: (I	M/V)/Lf >1							
В	С	D	E	F	G	Н	1	J	К	
					Total Footing Rotation Ang					
				idity Footing Rotation s ex? Angle (radians) r		Elastic	(based on the assumption that allowable storey drift >1%) (radians)			
			Rigidity			strength				
	Footing Shape		Index?			ratio				i:
Lc/tf	(Bf/Bm)	Bf/Lc	Ir	g	d	f	10	LS	СР	
0.01	Rectangle (1)			0.005	0.1	0.33	0.02	0.08	0.1	v
0.3	Rectangle (1)	10 or more		0.01	0.1	0.5	0.015	0.08	0.1	p
1	Rectangle (1)			0.02	0.1	0.67	0	0	0	
0.01	Rectangle (1)	3		0.005	0.1	0.33	0.02	0.08	0.1	
0.3	Rectangle (1)	3		0.01	0.1	0.5	0.011	0.0675	0.085	
1	Rectangle (1)	3		0.02	0.1	0.67	0	0	0	
0.01	Rectangle (1)	1 or less		0.005	0.1	0.33		0		
0.3	Rectangle (1)	1 or less	Not	- fin	0.1	0.5		5. 🛦		
1	Rectangle (1)	1 or less		0.02	ai _{0.1}	0.67		×y		
0.01	I-shape (5)	10 or more		0.003		0.5				
0.3	I-shape (5)	10 or more	V	alue	2S 0.1	0.5				
1	I-shape (5)	10 or more		0.01	0.1	0.5		ſ	-	<u> </u>
<0.01	I-shape (5)	3						10 E	$-g \rightarrow$	
0.1	I-shape (5)	3						1.0		В
0.4	I-shape (5)	3							F	
<0.01	I-shape (5)	1 or less							ζ_	
0.1	I-shape (5)	1 or less						/	f	
0.3	I-shape (5)	1 or less						V	, ,	

Characterizing backbone and hysteresis loops for

Conclusions

- Corrected misconceptions about analysis and stability of rocking and hinging systems
 - No need to analyze rocking systems as if they are fundamentally different from hinging systems
 - IDA and fragility curves show rocking systems are superior to conventional hinging systems. (Deng et al. 2011, Spectra)
- Energy dissipation and recentering are important
- Ground improvement can be used to allow rocking in poor soils (piles or concrete pads)
- Design implementation
 - ASCE 41 component action tables for rocking foundations
 - DDBD (Direct Displacement-Based Design)

Direct Displacement Based Design

