Last Hurdles for
Implementation
of Rocking
mnl” I Foundations for

Bridges

Sulsniclond Bruce Kutter

_ Sashi Kunnath
Pins Lijun Deng
(b) Jacquelyn Allmond
Rocking Manny Hakhamaneshi

q footings JA




ldeas for today

Correct misconceptions about analysis and stability of
rocking and hinging systems

— No need to analyze rocking systems as if they are
fundamentally different from hinging systems

— IDA and fragility curves show rocking systems are superior
to conventional hinging systems. (Deng et al. 2011,
Spectra)

Energy dissipation and recentering

Design implementation

— ASCE 41 — component action tables for rocking
foundations

— DDBD (Direct Displacement-Based Design)
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Makris and Kostantinidis (2001) — “rocking
structures cannot be replaced by “equivalent” single-
degree-of-freedom-oscillators”
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Hurdle 1 - mistaken notion that
rocking behavior is fundamentally
different from hinging behavior.

Both have a well defined capacity and stiffness.
Pushover curves are very similar

The rotation required to cause instability (i.e., the
rotation at which the P-A moment is equal to the
moment capacity) is approximately equal to the
minimum of C. or C,. So, if C, = C,, the rotation to cause
instability is the same for rockmg and hinging systems.

The one important difference is the benefit of re-
centering associated with rocking.
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Table 1. Values for parametric studies

Hc.(m)  Period, 71 (s) Gy C,  Kao/ Kg Lr(m)  Remarks
Short: 3 0.3 0.3 04 1.0 2.64 Hinging-column system
0.3 04 03 2.0 1.92 Rocking-foundation system
0.5 03 04 1.0 2.64 Hinging-column system
0.5 04 @ 0.3 2.0 1.92 Rocking-foundation system
Tall: 10 0.5 03 04 1/4 8.82 Hinging-column system
0.5 04 03 1/1.5 6.17 Rocking-foundation system
1.0 03 04 1/4 8.82 Hinging-column system
1.0 04 03 1/1.5 6.17 Rocking-foundation system

C, =M, /(P H,) : base shear coefficient to initiate column yielding

C,= M 1o/ (P H,) : base shear coefficient to initiate footing rocking

Ka ! Kg @ elastic stiffness of the column / elastic stiffness of footing



40 pulse-like and 40 broadband
motions from PEER database (Baker)
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Figure 3. Spectral accelerations of unscaled ground motions: (a) 40 pulse-like motions, (b) 40
broadband motions at soil site recorded in earthqualkes of Magnitude=7 and Distance=10 km, and (c)
a comparison of mean spectra of two types of motions 1n linear scale.
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Median deck drift from IDA
Min(Cy or Cr) =0.3
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Figure 10. Spectral acceleration at the elastic system period vs. median maximum deck drifts for all

the systems in this study. For rocking systems C,=0.3; for hinging column systems C,=0.3.



Hurdle 2 - mistaken notion that
conventional methods for predicting drift
demand are not appropriate for rocking
systems.

 We show that response-spectrum-based
approaches are equally appropriate (or
equally inappropriate) for rocking and hinging
systems.



Residual deck drift from IDA
Min(Cy or Cr) = 0.3
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Figure 11. Spectral acceleration at elastic period of systems vs. median residual drift ratio (4,.;/ H.):
(a) tall column bridges; and (b) short column bridges. The approach to obtain the median maximum
drift of the deck illustrated in Figure 9 was employed here to obtain the median residual drift ratio of
the deck.



Comparison of performance in
broadband and pulse-like motions
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Figure 13. Comparison of median maximum drift of deck of rocking and hinging systems subject to
pulse-like and broadband motion suite: (a) H.=10.0 m, 7;=1.0 s; (b) H. =3.0 m, 7,=0.5 s. Legend

notations: PL= pulse-like motions; BB= Broadband motions.



Fragility Curves — pulse like motions
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Hurdle 3— misconception that a
rocking system is less stable than a
hinging system

* For the analyses presented, rocking systems
are more stable than hinging systemes.

— It all comes down to the hysteresis curve
e Capacity
e Stiffness
* Damping
* Recentering

— Rocking systems have recentering



The difference in behavior comes down to
the shape of the hysteresis curve.
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Figure 13. Load-displacement hysteresis for different energy-dissipating devices: (a) an elastic
column, (b) an elastic-perfectly-plastic column, (¢) a rocking footing on a rigid ground (with zero
hysteretic and radiation damping), (d) a controlled rocking building system [33], and (e)
experimental data from a rocking-foundation model with Ls/Z=30.2.



Other Hurdles — rocking may not be appropriate
for poor soils without improvement
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Rocking on liquefiable soils
with and without piles

(Allmond et

al. 2010)
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Other Hurdles

e Lack of design methods — partly solved by
showing that conventional methods also apply
to rocking systemes.

— ASCE-41 work

e Credit Mark Moore, ZFA, among others

e Developing Component Action Tables for Rocking
systems

— DDBD

* Need to carefully characterize the damping and
stiffness properties of the hysteresis loop.



ASCE 41 — Rehabilitation of Existing Buildings
component action tables

Modeling Parameters and Mumerical Acceptance Criteria for Monlinear Procedures
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Characterizing backbone and hysteresis loops for
ASCE 41 and DDBD
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Conclusions

Corrected misconceptions about analysis and stability of
rocking and hinging systems

— No need to analyze rocking systems as if they are fundamentally
different from hinging systems

— IDA and fragility curves show rocking systems are superior to
conventional hinging systems. (Deng et al. 2011, Spectra)

Energy dissipation and recentering are important

Ground improvement can be used to allow rocking in poor
soils (piles or concrete pads)

Design implementation
— ASCE 41 — component action tables for rocking foundations
— DDBD (Direct Displacement-Based Design)
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Spectral Displacement (m)

Direct Displacement Based Design
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