Macro-Elements for Soil-Pile Interaction in Liquefied Soil

Scott J. Brandenberg, Jian Zhang, Yili Huo, and Minxing Zhao, UCLA

PEER Transportation Systems Research Program
October 1, 2011

PySimple1 uniaxialMaterial formulation

PyLiq1 uniaxialMaterial formulation

Example Analysis Without Lateral Spreading

Example Analysis with Lateral Spreading

Centrifuge Modeling Comparison

Centrifuge Modeling Comparison

Centrifuge Modeling Comparison

Influence of Dilatancy

3-D Global Dynamic Analysis

Site Response Analysis

Non-Liquefaction Case

Earthquake Duration 60s 3D View, Scaling by 10

Liquefaction Case

Earthquake Duration 60s 3D View, Scaling by 10

Conclusions

- Calculations using the PyLiq1 materials compared reasonably with centrifuge test measurements.
- Dilatancy and the associated drops in pore pressure during undrained loading is important for laterally loaded piles in liquefiable soil.
- Simplified global dynamic simulations can be performed using the PyLiq1 materials.