

"High Fidelity" Nonlinear Building Simulation and Use of Open Science Grid

Graduate Student: André R. Barbosa

Advisors:Joel P. Conte and José I. RestrepoCollaborator:Jack W. Baker

- Introduction and Motivation
- 3-D Modeling of the National Earthquake Hazards Reduction Program (NEHRP) RC Frame-Wall Building
- Formulation for Vector-valued Probabilistic Seismic Demand Analysis of 3-D Structural Models
- **Running OpenSees on Open Science Grid** (Application Examples)
 - Probabilistic seismic demand hazard analysis making use of the "cloud method"
 - Sensitivity of probabilistic seismic demand hazard to finite element (FE) model parameters

PEER PBEE Methodology

PART I

3-D Modeling of the 13-Story NEHRP Building

NEHRP R/C Building Example

NEHRP design example (FEMA 451)

- Demonstrate the design procedures (ASCE7-05, ACI318-08)
- Building was re-designed to account for latest Seismic Design Maps and common practices in California

Modeling Approach

□ Should be comprehensive/significant validation at system level ...

Comprehensive and significant validation at component level

- > Walls: Nonlinear truss modeling approach
- Columns and beams: Force-based beam-column elements \succ
- > Diaphragms: Flexible diaphragms allowing for plastic hinge

Nonlinear Truss Model for RC Walls

Example of Component Validation: RC Wall

VIDEO

NEHRP BUILDING E-W RESPONSE: LGPC

PART II

Probabilistic Seismic Demand Analysis for 3-D Structural Models

PEER PBEE Methodology

Probabilistic Seismic Hazard Analysis (1)

Selection of an Intensity Measure (IM)

□ Sa(T₁) alone as the IM is not optimal (e.g. not efficient nor sufficient) in characterizing the ground motion intensity (e.g., for 2-D analysis: Baker and Cornell 2005; Luco and Cornell 2007; for 3-D analysis Faggella et al., 2011)

Consideration the spectral ordinates at other periods (i.e., proxy for spectral shape), namely:

- due to period lengthening (inelastic response)
- higher-mode effects

Vector-valued Probabilistic Seismic Demand Analysis

□ Probabilistic seismic demand hazard equation:

 $v_{EDP}(edp) = \int_{\mathbf{IM}} P[EDP > edp | \mathbf{IM}] \cdot | dv_{\mathbf{IM}}(\mathbf{im}) | \qquad Bazzurro, 1998$

□ Simplified **VPSHA**

- USGS probabilistic seismic hazard results
- Latest NGA ground motion (GM) prediction models
- Correlation by **Baker and Jayaram** (2008) for the NGA GM models

$$\nu_{EDP}(edp) = \sum_{all \ x_{1,i}} \sum_{all \ x_{2,j}} P\left[EDP > edp \mid Sa_1 = sa_{1,i}, Sa_2 = sa_{2,j}\right] \cdot P\left[Sa_2 = sa_{2,j}\left|Sa_1 = sa_{1,i}\right] \cdot \left|\Delta \nu_{Sa_1}\left(sa_{1,i}\right)\right|\right]$$

 \Box The second term in hazard analysis is computed for each sa_{1,i} and sa_{2,j}:

$$P\left[Sa_{2} = sa_{2,j} \middle| Sa_{1} = sa_{1,i}\right] = \\ = \sum_{k=1}^{N_{M}} \sum_{n=1}^{N_{R}} P\left[Sa_{2} = sa_{2,j} \middle| Sa_{1} = sa_{1,i}, M = m_{k}, R = r_{n}\right] \cdot P\left[M = m_{k}, R = r_{n} \middle| Sa_{1} = sa_{1,i}\right] \\ Ground motion prediction equation + \\ correlation coefficient + \\ hazard from USGS$$

Earthquake Records

□ NGA database (total 3551 records)

- Mechanism: Strike-slip (1004 records)
- Magnitude range: 5.5 to 8 (772 records)
- \blacktriangleright Distance: 0 40 kms (203 records)
- ➢ Vs30: C/D range (90 records)
- 90 ground motion records selected from 14 earthquakes

Distance [km]	Mw	# of records
0-20	5.5-6.4	27
0-20	6.4-7.3	27
20-40	5.5-6.4	21
20-40	6.4-7.3	15

PART III

Running OpenSees on Open Science Grid

OpenSees and Parameters Studies

Motivation

Perform parametric studies that involve large-scale nonlinear models of structure or soil-structure systems with large number of parameters and OpenSees runs.

□ Application example

- (1) Probabilistic seismic demand hazard analysis making use of the "cloud method"
 - Nonlinear time-history (NLTH) analyses of an advanced nonlinear FE model of a building,
 - 90 bi-directional historical earthquake records (unscaled and scaled by a factor of two)

□ Some numbers for this application example

Number of NLTH analyses	180
Average duration of NLTH analysis	12 hours
Average size of output data	1.4 GB
Estimated clock time on a desktop computer (180x12)	2,160 hours 90 days
Estimated size of output data (180x1.4)	250 GB

2. OpenSeesMP + Teragrid? 3. Other options?

Condor and Open Science Grid

Condor is a specialized workload management system for computational-intensive jobs.

 Project started in 1988, directed at users with large computing needs and environments with heterogeneous distributed resources (http://www.cs.wisc.edu/condor/).
(3) Worker Node

Open Science Grid is a national, distributed computing grid for data-intensive research.

- **Consortium of approx. 80 national laboratories and universities**.
- Opportunistic resource usage: resources are sized for peak needs of large experiments (Atlas, CMS, etc.), OSG allows for non-paying VO organizations to use their resources.
- Version of Condor for the grid

Using Open Science Grid

□ Some sites at **Open Science Grid** use the workload management system (glideinWMS) that provides a simple way to access their grid resources

https://twiki.grid.iu.edu/bin/view/Engagement/EngageOpenSeesProductionDemo

OpenSees and Parameters Studies

Motivation

Perform parametric studies that involve large-scale nonlinear models of structure or soilstructure systems with large number of parameters and OpenSees runs.

□ Application example

- (1) Probabilistic seismic demand hazard analysis making use of the "cloud method"
 - Nonlinear time-history (NLTH) analyses of an advanced nonlinear FE model of a building,
 - 90 bi-directional historical earthquake records (unscaled and scaled by a factor of two)

□ Some numbers for this application example

Number of NLTH analyses	180	
Average duration of NLTH analysis	12 hours	
Average size of output data	1.4 GB	
Estimated clock time on a desktop computer (180x12)	2,160 hours <mark>90 days</mark>	
Estimated size of output data (180x1.4)	250 GB	

Estimation of the Peak Roof Displacement

Estimation of the Maximum Peak Absolute Acceleration

Using Open Science Grid: Application Example 2

Motivation

Perform parametric studies that involve large-scale nonlinear models of structure or soilstructure systems with large number of parameters and OpenSees runs.

□ Application example

- (1) Probabilistic seismic demand hazard analysis making use of the "cloud method"
- (2) Sensitivity of probabilistic seismic demand hazard to FE model parameters
 - Nonlinear time-history (NLTH) analyses of advanced nonlinear FE model of a building
 - 90 bi-directional historical earthquake records (unscaled and scaled by a factor of two)

AL

Some numbers for application example 2 (work in progress)

Number of NLTH analyses per parameter set realization	180	
Average duration of NLTH analysis	12 hours	
Average size of output data	1.4 GB	
Parameters considered	6	15
Perturbations considered	4	direction (m) -32 -15 Distance in EW
Estimated clock time on a desktop computer (180x12x[(6x4x2)+1])	105,840 hours 12.1 years	Estimated clock time
Estimated size of output (compressed) data (180x1.4x[(6x4x2)+1])	12 TB	Open Science Grid 30 days !!

Wall clock time in OSG

Conclusions

- Comprehensive/significant validation of numerical models is required in order to obtain high-fidelity results.
- ✓ Three-dimensional models have to properly account for adequate modeling of the components and their interaction (between walls, slab and the gravity system).
- Probability based tools for seismic demand assessment have been developed, and provide for more accurate and efficient results.
- A workflow for running parametric studies that involve large-scale nonlinear models of structure or soil-structure systems with large number of parameters and OpenSees runs on Open Science Grid has been developed and is under testing.

✓ Comprehensive validation of numerical models for systems **Opportunistic usage of computational resources** How to cope with job recovery (jobs that are stopped because of preemption on OSG)? **Management and Analysis of Large Research Data Sets** ■ Where and what to store? **Data compression algorithms**? How to tune data transfers? **Education: OpenSees + Condor and OSG?** \checkmark **User interfaces for submitting jobs, receiving results Data visualization**

Acknowledgements

(UC Berkeley)

(Air-Worldwide)

(USGS)

(PEER, UC Berkeley)

- PEER and NEES
- Modeling
 - Professor Marios Panagiotou
 - Dr. Frank Mckenna
- Simplified VPSHA using USGS results
 - > Dr. Paolo Bazzurro
 - Dr. Stephen Harmsen
- Sensitivity of the Probabilistic Seismic Demand Analysis
 - Dr. Gabriele Garzoglio, Dr. Marko Slyz (Open Science Grid)
 - ➢ Taylor Gugino (Undergraduate student) (UCSD)
- **Portuguese Foundation for Science and Tecnology** (SFRH/BD/17266/2004)
- Departamento de Engenharia Civil, Universidade Nova de Lisboa

