Geotechnical Applications using **OpenSees**

Pedro Arduino University of Washington, Seattle

2011 PEER Annual Meeting,

Geo Applications using OpenSees

 What type of geotechnical problems can we currently analyzed using OpenSees?

Static and Dynamic Pile Analysis

Pseudo-Static Pile Pushover Analysis

results of pushover analysis for a fixed-head pile depth (m) -15 LPile LPile OpenSeed OpenSees -20^l 0.02 0.08 0.1 -2000 -1500 -1000 -500 ۵ 0.04 0.09 0 500 1 000 displacement (m) soil reaction (kN/m) depth (m) -15 LPike LPile OpenSees OpenSees -2000 -1000 0 1000 2000 shear force (kN) 3000 4000 -10000 -5000 5000 0 bending moment (kNm)

1D Consolidation

1D Consolidation

excess pore pressure: double drainage

single drainage

other results:

vertical effective stress

vertical settlement

Total & Effective Stress Site Response Analysis

Soil constitutive models include: PressureDependMultiYield PressureIndependMultiYield

A compliant base is considered using a viscous dashpot modeled using a *zeroLength* element and the *viscous* uniaxial material.

Total & EffectiveStress Site Response Analysis

surface acceleration

surface response spectra

comparison with other analytical methods

surface acceleration

surface response spectra

Dynamic Analysis of 2D Problems

Finite element mesh:

Dynamic Analysis of 2D Problems

shear stress-strain

lateral displacement

excess pore pressure ratio contours near slope

Excavation Analysis

The soil-wall interface is modeled using the *BeamContact2D* element.

The *InitialStateAnalysis* feature is used to create the gravitational state of stress in the model without accompanying displacements.

The plane strain formulation of the *quad* element is used for the soil with the *PressureDependMultiYield* nDMaterial for constitutive behavior.

Soil elements to the right of the wall are progressively removed to simulate an excavation.

Excavation Analysis

shear stress contours

Excavation Analysis

shear and moment in the wall during the excavation analysis

y z x

У

3D Foundation Analysis

Solid-Solid Model

Beam-Solid Model

3D Pile Analysis Lateral Spreading Effects

Baterpails sisce and independent with the encircle bayers of the strength state of the strength strength the strength st

3D Pile Analysis Lateral Spreading Effects

The beam-solid contact elements enable the use of standard beam-column elements for the pile

Thristial lowesty for the normal end of the soil to the pile

3D Pile Analysis Lateral Spreading Effects

Work with 3D FE models has shown that use of a general pile deformation creates p-y curves which are influenced by the selected pile kinematics

A rigid pile kinematic is used to evenly activate the soil response with depth and to obtain p-y curves which are free from the influence of pile kinematics, reflecting only the response of the soil.

Computational process

Current Efforts

Efficient solid element formulations would greatly benefit the performance of any simulation n4

How can we obtain more efficient finite element formulations?

Reduced integration

The integration of a typical 4-node quadrilateral element involves 4 integrations points. If this could be reduced to only a single integration point, that's 4 times less work. In 3D, it would be 8 times less work.

Can this be done?

- There are issues which must be overcome in order to use single point integration. The stiffness matrix becomes rank deficient, leading to spurious modes
- Stabilization techniques can be used to overcome the rank deficiency

►A single-point integration element with assumed strain hourglass stabilization has been implemented in OpenSees → SSPquad

Stabilized Single-Point Quad Element

The single-point element is less computationally demanding than the corresponding full integration element.

Site response analysis test problem

Execution time:

Quad element = **330 sec**

SSPquad element = **146 sec**

10/5/2011

Modeling Tools and Improvements

Liquefaction and lateral spreading involve saturated soil. When saturated, soil behavior can be described as a two-phase medium.

Finite element formulations have been developed to consider this aspect of soil behavior (Zienkiewicz and Shiomi 1984, Prevost)

The **SSPquad** element has been extended for use in the analysis of fluid saturated porous media. This new element has also been implemented in OpenSees \rightarrow **SSPquadUP**

The **SSPquadUP** element uses a mixed pressure-displacement formulation commonly known as the u-p approach.

A staggered time integration scheme is used to introduce unconditional stability in the temporal solution and to symmetrize the coupled system.

Near the incompressible-impermeable limit, this element does not satisfy the infsup condition, and stability of the pressure field solution cannot be guaranteed. A consistent stabilizing term is added to the system.

Stabilized u-p Quad Element

The SSPquadUP element is evaluated using several test problems. The results are compared to a nine-node quad element with a u-p formulation.

Flexible footing load test problem

10/5/2011

Stabilized u-p Quad Element

The effectiveness of the pressure field stabilization near the incompressible limit can be demonstrated by comparing the pore pressure distribution for stabilized and unstabilized cases.

0.05

0.03

0.02

0.01

0.00

9 node quad element

stabilized SSPquadUP

Stabilized u-p Quad Element

A site response analysis is conducted to gauge the robustness and efficiency of the SSPquadUP element.

10/5/2011

Other Applications: Piles in Sloping Ground, Bridge bent analysis

