

Civil and Environmental Engineering Department University of California, Berkeley, CA 94720

High Performance Fiber Reinforced cement-based Composites

Claudia P. Ostertag¹ and Sarah Billington² ¹CEE Department, University of California, Berkeley ²CEE Department, Stanford University

> PEER Annual Meeting Sept 30-Oct1, 2011

Outline

- I. Future Challenges
- II. Characteristics of High Performance Fiber Reinforced cement-based Composites (HPFRCCs)
- III. Damage Resistance of Bridge Structures due to HPFRCCs
- IV. Reservations/Concerns towards HPFRCCs
- V. Summary

I) Future Challenges

- Structures need to be safe under seismic loading conditions
- And in addition:
- I. Structures need to be damage resistant to reduce repair cost
- II. Structures need to last longer to enhance their service life
- III. Structures need to be sustainable hence preserve our resources & have low carbon foot print

Problems with many current bridge structures: Deterioration Example #1: Bridge Columns

(ASR) <u>Environmental Damage</u> (Corrosion)

Seismic Damage

Deterioration caused by <u>both environmental</u> and seismic loading conditions.

Problems with many current bridge structures: Deterioration Example #2: Bridge Approach Slabs

Effective Solution

The use of High Performance Fiber Reinforced Cement-based Composites in Concrete Structures for

- Higher Damage Resistance when exposed to both seismic <u>and</u> environmental loading conditions
- Extended Service Life and more Sustainable Structures
- Enhanced Performance

II) Characteristics of High Performance Fiber-Reinforced cement based Composites

Example: Hybrid fiber reinforced concrete composite (HyFRC)

Flexure beams: 6"x6"x28" Vf=1.5vol%

Conventional FRC Dominant crack forms at same load level as in plain concrete

HPFRC

II) Characteristics of High Performance Fiber-Reinforced cement based Composites

Example: Engineered Cementitious Composite (ECC)

Examples of HPFRCCs that have been used for structural applications

ECC: mortar matrix without coarse aggregate, 2 vol% PVA fiber (developed by Prof. Li at University of Michigan)

HyFRC: concrete matrix with 9.5mm coarse aggregates, 1.5 vol% fibers (developed by Prof. Ostertag at UC Berkeley)

	Microfibers Microcracks Macrocrack Hybrid Fiber Reinforced Composite (HyFRC) (b)		
	RECS 15x8	ZP305	RC-80/60-BN
Material	PVA	Steel	Steel
Length [mm]	8	30	60
Diameter [mm]	0.04	0.55	0.75
Aspect Ratio [L/d]	200	55	80
Elastic Modulus [GPa]	42	200	200
Tensile Strength [Mpa]	1600	1100	1050
Volume Fraction [%]	0.2	0.5	0.8
Fiber Spacing [mm]	0.79	6.89	7.43

1st generation of HyFRC: Bridge Approach Slabs for Area III (CalTrans)
2nd generation of HyFRC: Self-compacting HyFRC: Bridge Columns (PEER)
3rd generation of HyFRC: Service Life Enhancement and Reduction in Carbon Footprint of Highway Structures (FHWA)

III) Damage Resistance of bridge structures due to HPFRC

- Example #1: Precast ECC segmental bridge piers (Billington)
- Example #2: Bridge columns with Selfcompacted HyFRC (SC-HyFRC); (PEER: Ostertag & Panagiotou)

Example #3: Bridge Approach slabs in Area III with HyFRC (CalTrans: Ostertag)

Example #1 Damage Reduction with ECC

Precast Segmental Bridge Piers with Unbonded Post-tensioning for self-centering

ECC Hinge Region After ~4% drift

Reinforced Concrete Hinge Region After ~2% drift

(Rouse, 2003; Billington & Yoon, 2004; Lee & Billington, 2008)

12 ft.

Example #2: Damage & Spalling Resistance of Bridge Columns with self-compacting HyFRC (SC-HyFRC)

PEER funded project (Ostertag& Panagiotou)

SC-HyFRC TEST SPECIMENS

PEER

1:4.7 Scale Specimens
Aspect Ratio, H / D = 4
Axial Load Ratio, N / f'_c A_a = 0.1

Designed to rock at column/foundation interface

Designed for plastic hinge formation

SPALLING & DAMAGE Resistance in SC-HyFRC Bridge Columns compared to conventional concrete columns

Damage resistance of SC-HyFRC Columns, compared to conventional Concrete Columns after being subjected to approx. same drift ratio of 4%

In SC-HyFRC columns spalling of cover occurs only locally and is delayed up to 3.6% drift ratio despite half the transverse reinforcement ratio, (ρ_v) , 0.37% vs. 0.7%).

Ostertag and Panagiotou (PEER 2011/106) Terzic et al, (2009)

Damage and Spalling Resistance due to SC-HyFRC

Drift ratio: 3.6%

4.0%

Self-compacted HyFRC column ρ_v =0.37% Conv. reinforced concrete column $\rho_{\rm v}$ =0.70%

Self-compacted HyFRC column during 11% drift PEER (Ostertag & Panagiotou)

Example #3: Damage Resistance of bridge approach slabs in area III due to HyFRC

Mitigate deterioration caused by: early age cracking, environmental, & mechanical loading conditions.

CalTrans project (Ostertag)

Corrosion Frost Action Alkali Silica Reaction

Multi-scale crack control in HyFRC on Flexural Performance of 1/2 scale bridge approach slabs

Material	PVA	Steel	Steel
Length [mm]	8	30	60
Diameter [mm]	0.04	0.55	0.75
Aspect Ratio [L/d]	200	55	80
Elastic Modulus [GPa]	42	200	200
Tensile Strength [Mpa]	1600	1100	1050
Volume Fraction [%]	0.2	0.5	0.8
Fiber Spacing [mm]	0.79	6.89	7.43

Beam size: 6"x6"x24" (15cm x15cm x60cm) Fibers: PVA microfibers and steel macrofibers $(V_f=1.5\%)$

Blunt & Ostertag, ACI, Vol. 106, p. 265 (2009) Blunt & Ostertag, ASCE, Vol. 135, p. 978 (2009) CalTrans Report No. CA09-0632, 2008.

HyFRC versus reinforced concrete ¹/₂ scale bridge approach slab

Damage Resistance of Reinforced HyFRC

Macrocrack formation after 5 cycles of **9.5** kip loading

Ostertag and Blunt, FraMCoS-7 Jeju Korea, 2010 Blunt and Ostertag, ACI J. Engrg. Mech., 2009

2.5

0.08

0.1

60 Z

Load Capacity

20

0.12

H11

H2

H3

Damage Resistance of Reinforced HyFRC despite 2x the applied load

Macro crack formed in control concrete after 5 cycles of **9.5** kip loading Ostertag and Blunt, FraMCoS-7 Jeju Korea, 2010 Blunt and Ostertag, J. Engrg. Mech., 2009

Reinforced HyFRC

Only Microcracks formed in HyFRC after 5 cycles despite **double the load level** Exposure of pre-loaded Control and HyFRC beams to 3% NaCl ponding solution

Tensile Surface (in flexure) exposed to 3% NaCl ponding solution in hot chamber (50°C at 50% RH)

Electrochemical measurements:

- Corrosion potential measurements
- Polarization resistance measurements
- Galvanic current flow measurements

Effect of HyFRC on Frost Resistance

ASTM C666 test

Cycling temperature: +4°C to -18°C

HyFRC: after 220 cycles

Plain Concrete: after 50 cycles

HPFRCCs enhance damage resistance and durability plus:

Provide Internal confinement and tensionstiffening [see student Poster (PEER funded project Billington & Ostertag on ECC and HyFRC] SC-HyFRC provides internal confinement which
i) Leads to stable softening behavior
ii) Provides spalling and damage resistance &
iii) Allows reduction in transverse reinforcements

Unconfined SC-HyFRC and Control (SCC) in compression

Internal Confinement of HyFRC leads to spalling and damage resistance

Confined specimens tested in compression

 $\rho_{s} = 0.5\%$

PEER project Billington & Ostertag

Peak Load

7.5 mm

Concrete: extensive spalling

SC-HyFRC: delay in damage initiation and damage progression

Large-Scale Verification

Better performance in SC-HyFRC with half the spiral reinforcement

Self-compacted HyFRC column during 11% drift PEER (Ostertag & Panagiotou)

Drift Ratio

Self-compacted HyFRC Conv. reinforced concrete column,
column $\rho_s = 0.37\%$ $\rho_s = 0.70\%$

HPFRCCs enhance damage resistance and durability plus:

- Provide Internal confinement and tensionstiffening (see Poster by Billington & Ostertag on ECC and HyFRC)
- Provide Shear resistance (Prof. Billington in TSRP session on High Performance materials and Sustainable Structural Design)

Provide Impact Resistance (Dr. Vossoughi in TSRP session on High Performance materials and Sustainable Structural Design)

Multi-scale Crack Control in HyFRC on Impact Resistance

Velocity of projectile: 127m/s

Velocity of projectile: 167m/s

Vossoughi et al

Reservations towards HPFRCCs

"...HPFRCs in structures will lead to higher initial cost..." True..... but: HPFRCCs allow new design possibilities due to enhanced performance and allow reduction in steel reinforcement Less Repair and extended Service Life

Reservations towards HPFRCCs

"...HPFRCs in structures will lead to higher initial cost..." True..... but: HPFRCCs allow new design possibilities due to enhanced performance and allow reduction in steel reinforcement Less Repair and extended Service Life

BAS Detail Modification due to HyFRC

CalTrans project

HPFRC allow new design possibilities due to enhanced performance

EER

Current PEER Project on precast structural HyFRC tubes as permanent formwork

Reservations towards HPFRCCs

"...HPFRCs in structures will lead to higher initial cost..." True..... but: HPFRCCs allow new design possibilities due to enhanced performance HPFRC allow reduction in steel reinforcement Less Repair and extended Service Life

Higher initial cost but less repair and Extended Service Life

HPFRCCs have the potential to extend the initiation phase and slow down the propagation phase of damage

HPFRCCs extend the Damage Initiation Phase

Because HPFRCCs provide the necessary crack resistance and thereby minimize ingress of aggressive agents into the concrete

Extending Damage Initiation Phase due to HyFRC

Control BAS

Dominant crack in control specimens after 5 cycles

HyFRC BAS

No cracks in HyFRC after 5 cycles (same load)

Slowing down Damage Propagation Phase with HyFRC

Microfibers bridge these microcracks in close vicinity to the reaction site at onset

Reservations towards HPFRCCs

- "... for Corrosion resistance why not using stainless steel rebars..."
- Yes.... but
- not effective in regards to other environmental deterioration processes such as ASR, damage due to frost action, sulfate attack etc...

Concerns in regards to HPFRCCs

"...Adding fibers reduces workability ... makes it more difficult for CIP applications specially for structures in seismic prone regions that are heavily reinforced..."

In principle true ... but not anymore ... due to self-compacting HPFRCs

SC-HyFRC FOR BRIDGE COLUMNS

Casting of Self-compacting HyFRC bridge columns without external and internal vibration (PEER funded project; Ostertag & Panagiotou).

Concerns in regards to HPFRCCs

"HPFRCC matrix grabs onto rebar and cause localization and premature failure of rebar"

True for UHPFRC ... but not for ECC and HyFRC (see PEER student poster on confinement and tension stiffening; PEER project: Billington & Ostertag)

Tension stiffening and high ultimate load capacity of ECC, HyFRC and SC-HyFRC

ECC, HyFRC and SC-HyFRC are able to carry tension to strains far greater than the yield strain of the steel reinforcing bar

PEER Poster session: "Tension stiffening and Confinement in HPFRCCs": Billington & Ostertag; Poster presenter: Will Trono (UCB)

41" long with 5"x 5" cross-section ρ=1.2%

Summary

HPFRCCs

- Enhance Damage Resistance (when exposed to both seismic and environmental loading conditions)
- Extend Service Life of concrete structures
- Make Structures more sustainable (by preserving our resources)

Summary

HPFRCCs

Provides a Holistic Approach towards enhancing the Durability of concrete structures

(i.e. it does not only mitigate corrosion but also ASR, frost damage, salt scaling, drying shrinkage... etc).

Research NEEDS:

Whereas mechanical properties of plain HPFRCCs have been studied and are well documented,

- Few studies exist on synergy between HPFRCC matrix and steel rebar.
- Model development and establish design guidelines

Need large scale test verification for HPFRCCs in CIP and ABC applications

TSRP session on High Peformance Materials & Sustainable Structural Design; Session Chair: Prof. Billington (Sa afternoon)

Speakers	Affiliation	Title of presentation
		Design and Usage of Micro-Reinforced Concrete (Ducon) for
Phil Hoffman	Structural	Seismic jacketing and other Applications
	Tongji University,	
Ying Zhou	Shanghai, China	High Performance Concrete Structural Walls for Tall Buildings
Fariborz	Ben C. Gerwick,	
Vossoughi	Inc.	Impact Resistance of High Performance Materials
Sarah	Stanford	Performance and Modeling of Damage Tolerant Fiber-
Billington	University	reinforced Concrete in Seismic Retrofits
Claudia		Durable and Damage Resistant High Performance Fiber
Ostertag	UC Berkeley	reinforced Bridge Structures
Lindsey	Forell/Elsesser	
Maclise	Engineers, Inc	Sustainable Materials Certification
Arpad		
Horvath	UC Berkeley	Principles of Sustainable Design for Structures
Michael	Stanford	Life Cycle Assessment of Concrete Structures in Multi-hazard
Lepech	University	Environments

Thank you for your attention

Corrosion Experiments revealed that splitting bond cracks in reinforced concrete increase CI ingress

Fine cracks parallel to rebar (splitting bond cracks) in control specimens

Splitting bond cracks **not** observed in HyFRC due to : 1)Fibers reduce load demand on rebar thereby reducing bond stresses 2)Fibers effective in reducing crack propagation and growth of bond cracks