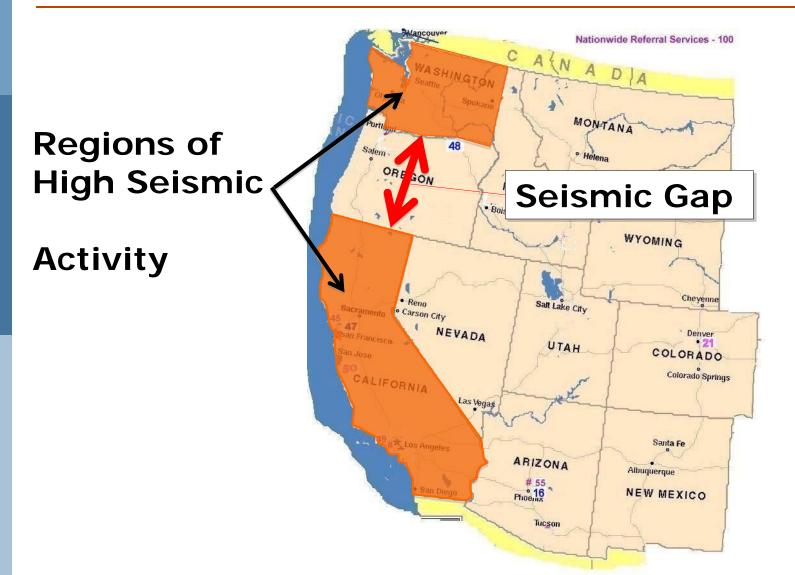
2011 Annual Meeting

PEER

Shattuck Plaza Hotel, Berkeley, CA September 30¹– October 1, 2011 Pacific Earthquake Engineering

2011 Annual Meeting


Stephen Mahin Director, PEER Professor of Structural Engineering, UC Berkeley

Shattuck Plaza Hotel, Berkeley, CA

September 30² October 1,, 2011

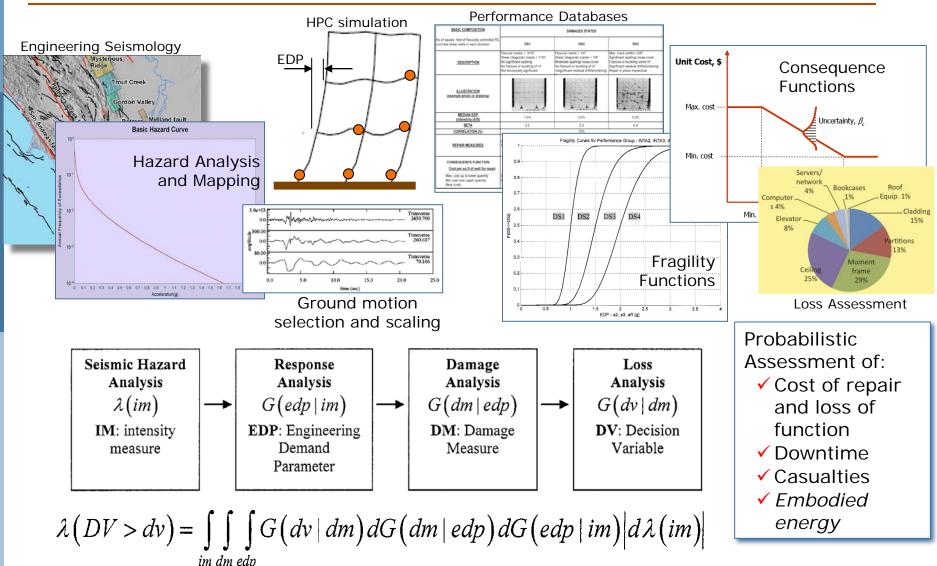
Pacific Earthquake Engineering Research Center

Pacific Earthquake Engineering Research Center

Oregon State University joins PEER!

PEER's Mission

- Advance and apply performance-based earthquake engineering tools to meet the needs of various stakeholders
- Problem-focused, multi-disciplinary research built upon foundation of engineering and scientific fundamentals
- Close partnerships with government, industry and engineering professionals
- Strong national and global research collaborations
- Commitment to education at all levels



Education, Outreach and Training Disseminating Research Findings and Promoting Multidisciplinary Understanding

- Support for K-12 programs
- Research Experiences for Undergraduates (NSF-PEER)
- Continuing education:
 - Research to practice
 - New professionals
- International collaborations for faculty and students
 - Center for Urban Earthquake Engineering, Tokyo Tech
 - Tongji University & others
 - Young Researcher Forums
- National Information Service for Earthquake Engineering (NISEE)

Our DNA: Integrated PBEE methodology

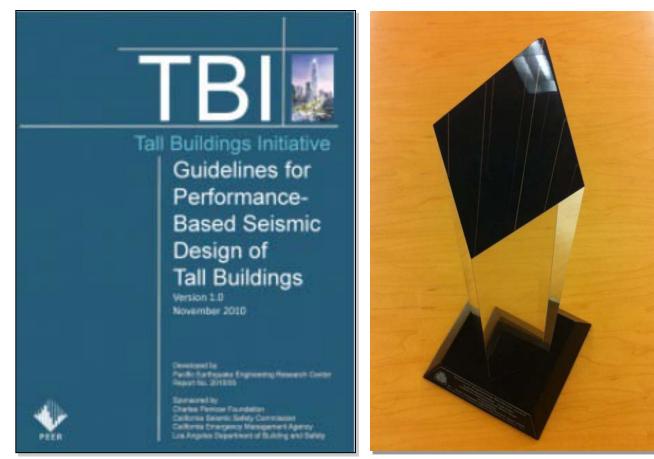
Buildings

- Vulnerable existing buildings
- New and existing tall buildings
- Sustainable and resilient buildings
- Transportation Systems
 - Highway networks and bridges
 - High-speed rail systems
 - Ports and harbors
- Lifeline systems
 - Electrical power distribution systems
 - Nuclear power plants
 - LNG storage facilities

3758

New Buildings

- Design guidelines for tall buildings in seismic zones
- Sustainable and natural hazard resilient buildings


- Advanced dynamic analysis procedures
- Soil-structure interaction
- Innovative structural systems
- Vulnerability of existing tall buildings
 - Seismic isolation
 Re-centering systems
 Testing and modeling of improved components and systems
 Comparative PBEE studies
- Socio-economic studies

Award – Tall Building Initiative

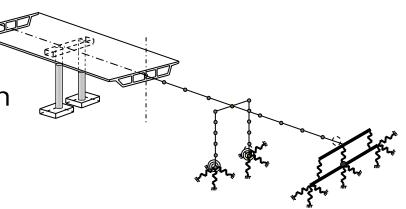
2011 Excellence in Structural Engineering Award

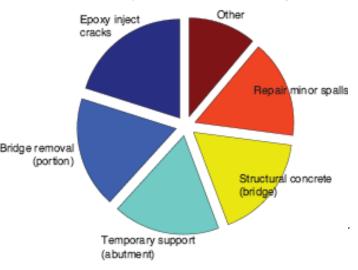
Research Category – Large Projects

New Buildings

- Design guidelines for tall buildings in seismic zones
- Sustainable and natural hazard resilient buildings

- Advanced dynamic analysis procedures
- Soil-structure interaction
- Innovative structural systems
 - Seismic isolation
 Re-centering systems
 Testing and modeling of improved components and systems
 Comparative PBEE studies
 - Socio-economic studies


Existing Buildings: Risk Assessment and Reduction for Existing Tall Buildings


Many tall buildings in California's urban cores are build in the 1970s and 1980s using code provisions known to have serious deficiencies -- large number of steel moment frame buildings

Transportation Systems

- Highway bridges
 - Accelerated Bridge Construction
 - Precast columns
 - New technologies
 - High performance materials
 - Fiber reinforced, hybrid concrete & ECC
 - Self-centering columns
 - Seismic isolation
 - Rocking foundations
 - Damage-resistant foundations
 - Advanced analysis for SSI & liquefaction
 - Refining PBEE techniques

Contribution to expected cost for 50%-in-50-years PE

Transportation Systems

High-speed rail systems

- Bayesian network systems for design and post-event emergency management, including dependencies on electric grid
- Seismic isolation
- Spatially varying motions
- Fault crossing studies
- Early warning systems
- Vehicle dynamics during earthquakes

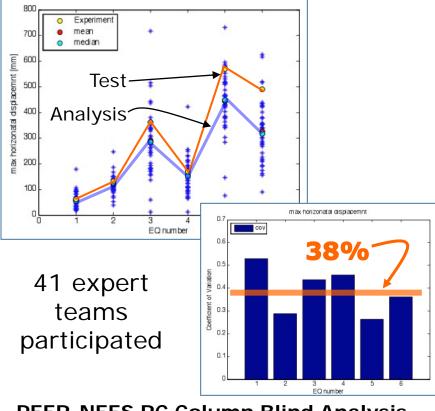
Transportation Systems

High-speed rail systems

- Bayesian network systems for design and post-event emergency management, including dependencies on electric grid
- Seismic isolation
- Spatially varying motions
- Fault crossing studies
- Early warning systems
- Vehicle dynamics during earthquakes

Pursuing Fundamental Knowledge: Behavior of Reinforced Concrete Columns

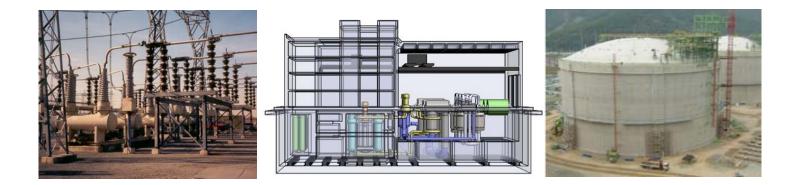
Tests undertaken to validate concepts and numerical models used in PBEE


Reduced-scale 3D tests of conventional circular and rectangular columns, selfcentering columns, rocking columns (PEER)

Full-scale 1D tests of circular column -Jose Restrepo, PI (PEER, Caltrans, UNR, FHWA, NEES@UCSD, NEES & NSF)

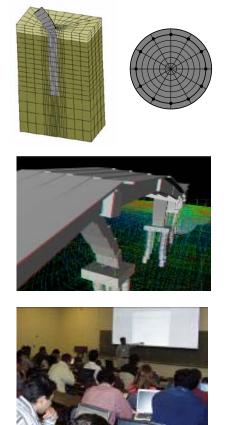
Pursuing Fundamental Knowledge: Behavior of Reinforced Concrete Columns

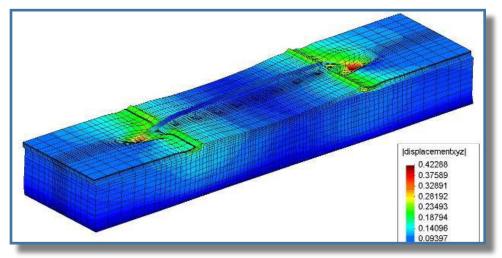
Tests undertaken to validate concepts and numerical models used in PBEE


PEER-NEES RC Column Blind Analysis Contest - 2010

Full-scale 1D tests of circular column -Jose Restrepo, PI (PE9R, Caltrans, UNR, FHWA, NEES@UCSD, NEEScomm & NSF)

- Lifeline systems
 - Electrical power distribution systems
 - Nuclear power plants
 - Fuel storage facilities

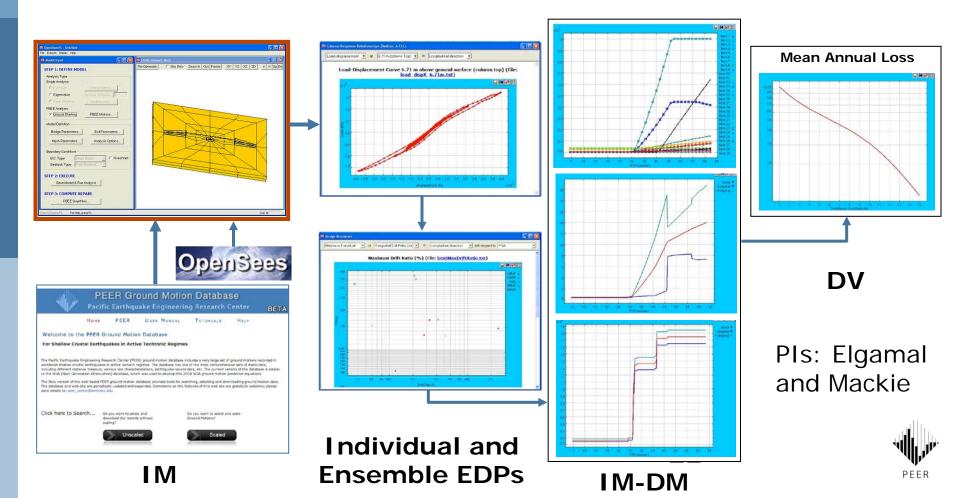



Goal: To improve safety and reliability of Lifelines Systems More than 120 projects have been initiated

Enabling Technology: High Performance Simulation

OpenSees - Open Source, object oriented framework for seismic simulation of geotechnical and structural models

New Development Efforts by PEER:


- Optimization and reliability analyses
- New elements
- Graphical user interfaces
- Integrated PBEE tools

http://opensees.berkeley.edu or NEES.org

OpenSees PBEE

Integration of tools and methodologies

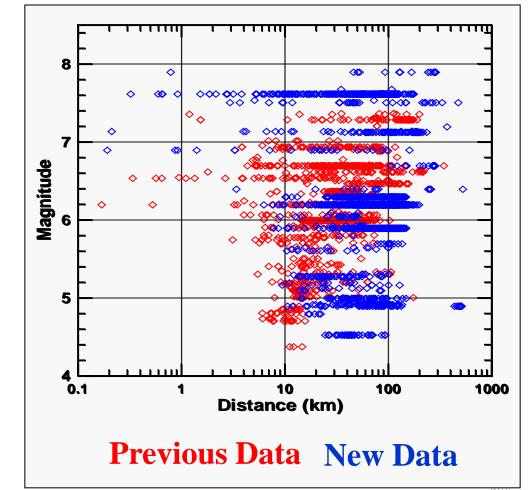
Partnering with NEEScomm

Integrating High Performance Simulation with NEEShub

NEEShub George E. Brown, Jr. Network for Earthquake Engineering Simulation Tools & Resources Learning & Outreach Project Warehouse Sites Collaborate Explore You are here: A Home * Resources * Tools * OpenSees Laboratory * Session: 12502 *OpenSees Laboratory (12:14 am)* OpenSees Laboratory (12:14 am)	NEEShub George E. Brown, Jr. Network for Earthquake Engineering Simulation Tools & Resources Learning & Outreach Project Warehouse Sites Collaborate Explore You are here: It Home = Resources = Tools = OpenSees Laboratory = Session: 12503 "OpenSees Laboratory (12:15 am)" OpenSees Laboratory (12:15 am)
<image/> <image/> <image/>	<image/>

Partnering with NEEScomm

OpenSees "Apps" - User developed tools powered by OpenSees


NEEShub Gorge E. Brown, Jr. Network for Earthquake Engineering Simulation Tools & Resources Learning & Outreach Project Warehouse Sites Collaborate Explore You are here: A Home > Resources > Tools > OpenSees Laboratory > Session: 12503 "OpenSees Laboratory (12:15 am)" OpenSees Laboratory (12:15 am)	NEEShub George E. Brown, Jr. Network for Earthquake Engineering Simulation Tools & Resources Learning & Outreach Project Warehouse Sites Collaborate Explore You are here: Tools > Tools > OpenSees Laboratory > Session: 12503 *OpenSees Laboratory (12:15 am)* OpenSees Laboratory (12:15 am)
	Application: Dor Earthquake Response Image: Control of the Earthquake Response Image: Contro of the Earthquake Response

Improved Characterization of Seismic Hazard

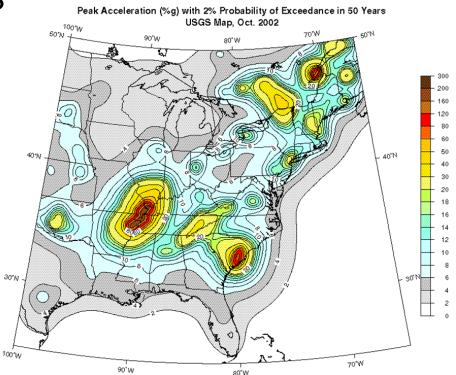
NEXT GENERATION ATTENUATION MODEL RESEARCH PROGRAM

NGA West

- Multi-disciplinary team
 - geologists
 - seismologists
 - seotechnical engineers
 - structural engineers
- Database
 - 173 worldwide earthquakes
 - 10,500 uniformly processed records
- Funded by NRC, DOE, EPRI, Caltrans, utilities and other

NGA East

- Collaboration with USGS
- Funded by US NRC, DOE, EPRI and others
- PEER leadership and management

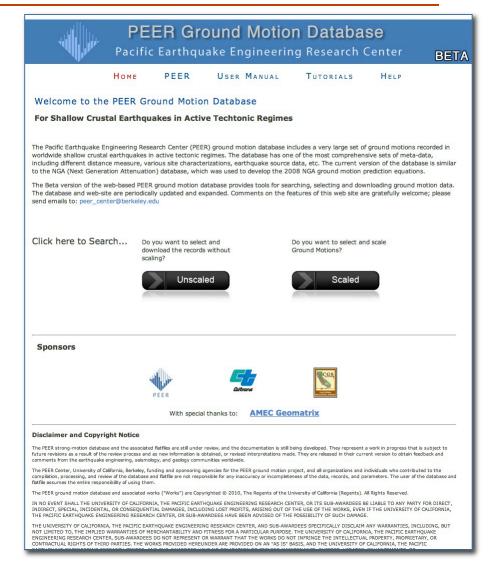

Updating NGA West

- Recent earthquake data
- Near-fault directivity effects
- Soil effects
- Vertical motion effects

Global Earthquake Model (GEM)

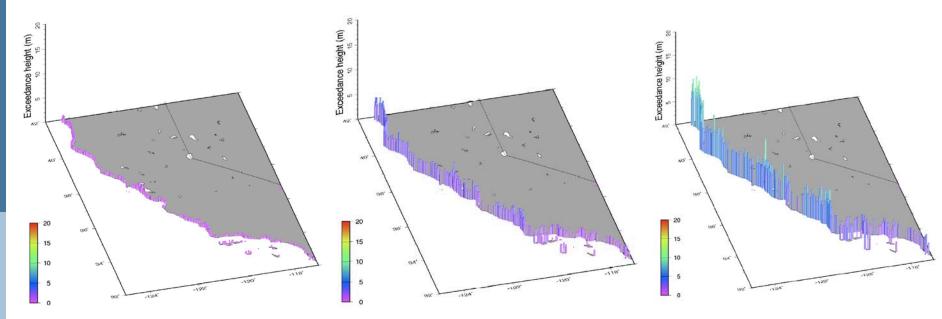
 GMPEs for Global Hazard Module

Coming Soon: NGA Subduction


Focuses on seismic criteria for next generation of nuclear power plants

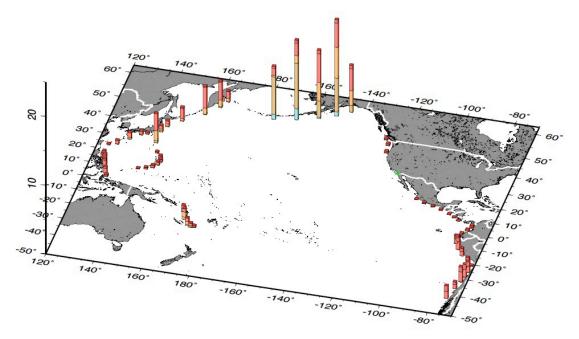
Enabling Tools: Accessing Ground Motions

Ground Motion Data Sets for PBEE Studies


- Scenario Based Motions
 - Broad-Band Motions (M=7, R=10 km, Soil)
 - Broad Band Motions (M=7, R=10 km, Rock)
 - Broad Band Motions (M=6, R=25 km, Soil)
- Pulse-like Motions
- Site Specific Motions for Oakland for 2%, 10% and 50% probabilities of exceedence (Berkeley, Los Angeles and Sacramento coming soon)
- PI: Baker

http://peer.berkeley.edu/transportation/ publications_data.html

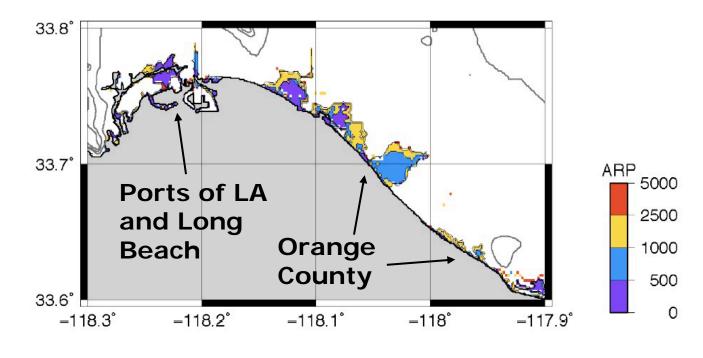
Earthquake-Related Hazards: Tsunami Engineering Research Group:


Probabilistic hazards in a form consistent with ground motion hazard estimates

72 year 475 year 2500 years Probabilistic Wave Height and Velocity Estimates

Tsunami Engineering Research Group: Probabilistic Tsunami Hazard Analysis

Probabilistic hazards in a form consistent with ground motion hazard estimates



Deaggregatized contribution of sources to tsunami hazard in port of San Diego

PEER Tsunami Engineering Research Group: Probabilistic Tsunami Hazard Analysis

Probabilistic hazards in a form consistent with ground motion hazard estimates

Probabilistic Inundation Maps

PEER Tsunami Engineering Research Group: Risk Assessment and Mitigation

Earthquake-Related Hazards: Fire Following Earthquakes

Aging infrastructure can trigger fires

Will resources be available to fight urban fires?

Will earthquake damage prevent effective fire suppression in tall buildings?

New research initiatives on:

- Vulnerability of fuel and water supply systems to earthquakes
- Case studies of fires in tall buildings following earthquakes
- Communications systems for emergency management and recovery

Earthquake-Related Hazards: Even moderate damage may mean buildings lose their functionality

Such damage can have substantial long-lasting social, economic and cultural impacts on a city.

Natural disasters cause wide-

spread moderate damage

Beyond Safety: Issues for Sustainable and Earthquake-Resilient Structures

In *Earthquake Engineering*, our future challenge is to develop new or improved structures that:

- protect public safety, and are
- economical, but that
- can be constructed quickly with minimal disruption to the public and to the environment, and
- can withstand strong earthquake ground shaking (and other hazards) safely, with little disruption or cost associated with post-earthquake inspections and repairs.

Such approaches are consistent with, and supportive of, emerging trends related to sustainable development and "green" design.

Beyond Minimum Safety: Disaster-Resilient Structures

Numerous structural concepts possible

- High performance, low carbon materials
- Self-centering structural concepts
- Rocking Foundations
- Next-generation braced and damped systems
- Inertial damping systems
- Seismic Isolation

Business Interruption (BI)

Direct BI

Source: www.nytimes.com

Clean room in the Renesas Electronics Microcontroller Manufacturing Facility; Hitachinaka, Ibaraki Prefecture

Two weeks to complete initial damage assessments and begin repairs; partial operation targeted for June 2011

More than 2,000 external contractors have been hired to assist with repair work (Source: http://am.renesas.com)

Contingent BI

General Motors automobile assembly facility in Shreveport, Louisiana

Facility shut down for a week in March due to parts shortages

On April 22nd, Toyota announced that its manufacturing plants in North America were operating at 30% of capacity because of the parts supply situation.

Courtesy: Carlos Cabrera, RMS

		FRIDAY September 30, 2011	
Time	General Daily Schedule	Presentation Title	Speakers
8:00 - 9:00 am	REGISTRATION / BREAKFAST	LOCATED IN COURTYARD	
9:00 - 10:30 am PLENARY	S. Dia	Welcome by PEER Director and Selected Guests	Steve Mahin (PEER Center & UC Berkeley)
	PLENARY	Implications of Eastern Japan Earthquake of March 2011	Akira Wada (Architectural Institute of Japan)
		Engineering Resilience	Mary Comerio (UC Berkeley)
10:30 - 11:00am	BREAK		
11:00 - 12:00 pm PLENAR		The Next Big CA Earthquake	Janielle Maffei (California Earthquake Authority)
	PLENARY	Perspectives on Insurance and Financial Aspects of Earthquakes	Craig Tillman (WeatherPredict Consulting Inc.)
12:00 - 1:30 pm	LUNCH	LOCATED IN BOILER ROOM & COURTYARD	
1:30 - 3:00 pm	PLENARY	Seismic Hazard Analysis	Jack Baker (Stanford)
		Computational Simulation	Frank McKenna (PEER Center & OpenSees)
		High Performance Materials	Claudia Ostertag (UC Berkeley)
3:00 - 3:30 pm	BREAK		
3:30 - 5:00 pm	PLENARY	Geotechnical PBEE	Ross Boulanger (UC Davis)
		Bridge PBEE and Reslience	Mark Eberhard (University of Washington)
		PBEE and its applications to Tall Buidlings	Jack Moehle (UC Berkeley)
5:00 - 7:00 pm	STUDENT POSTER SESSION AND RECEPTION	LOCATED IN BOILER ROOM & COURTYARD	

Time	General Daily Schedule	Session Name	Location
8:00 - 9:00 am	REGISTRATION / BREAKFAST		
9:00 - 11:30 pm	CONCURRENT DISCUSSION SESSIONS	Tall Buildings	Boiler Room C
9:00 - 11:30 pm	CONCURRENT DISCUSSION SESSIONS	Dams and Risk Assessment	Whitecotton Room 6th floor
9:00 - 11:30 pm	CONCURRENT DISCUSSION SESSIONS	Tsunami	Crystal Ballroom
9:00 - 11:30 pm	CONCURRENT DISCUSSION SESSIONS	Nuclear	Boiler Room B
9:00 - 11:30 pm	CONCURRENT DISCUSSION SESSIONS	Fire & Lifelines	Boiler Room A
11:30 - 1:00 pm	LUNCH (starting at 12:15pm will be short summarizing presentations by morning session chairs followed by intro to Transportation Systems Research Program TSRP sessions)		Crystal Ballroom
1:00 - 3:30 pm	CONCURRENT TSRP MEETINGS	TSRP: Structures	Crystal Ballroom
1:00 - 3:30 pm	CONCURRENT TSRP MEETINGS	TSRP: Soils and Foundations	Whitecotton Room 6th floor
1:00 - 3:30 pm	CONCURRENT TSRP MEETINGS	TSRP: Simulations	Boiler Room B
1:00 - 3:30 pm	CONCURRENT TSRP MEETINGS	TSRP: New Sustainable & High Performance Materials	Boiler Room A
1:00 - 3:30 pm	CONCURRENT TSRP MEETINGS	TSRP: Systems	Boiler Room C
3:30 - 4:00 pm	CONCLUDING PLENARY		Crystal Ballroom

Please participate

- Learn about new research results
- Plan and participate in future research

