Seismic Issues for California's Nuclear Power Plants

Norman Abrahamson University of California, Berkeley

Seismic Setting for California's Nuclear Power Plants

- Major Offshore Strike-Slip Faults
 - Well defined geometry
 - 5-10 km offshore
 - Segmentation?
 - Slip-rates
 - 0.5 3 mm/yr
- Offshore / Onshore Thrust Faults
 - Not well constrained geometry
 - May extend under NPP (depending on dip and location)
 - Lower slip rates than SS
 - 0.2 2.0 mm/yr
- Smaller Offshore / Onshore faults
 - SS & RV
 - Low slip-rates
 - 0.01 0.5 mm/yr

Reaction to 2011 Tohoku Eqk

- For CA nuclear plants, focus has been on the large magnitude of the Tohoku Eqk
 - Are the DCPP and SONGS plants designed for M9 earthquake
 - If the Japanese can be surprised by a large magnitude earthquake, why do we think we won't be surprised too?
 - Can offshore SS rupture together in a large magnitude earthquake?
 - Linking multiple faults

Seismic Design Basis for Nuclear Power Plants

- We design for ground motions and tsunami wave heights, not earthquake magnitudes
- Deterministic Approach for Ground Motion
 - Select large rare earthquake scenario
 - Use 84th percentile ground motion level
 - not worst case
- Probabilistic Approach for Ground Motion
 - Select chance of ground motion level being exceeded at a site (e.g. 1/10,000 per year)
 - Accounts for rates of earthquakes and large variability of ground motion

Residual Risk

- Not designed for worst-case
- "Safe" = very small residual risk
- NRC determines what is "very small" – Zero risk is not possible
- Beyond design basis events need to be considered at critical facilities

- What do these "extreme events" look like?

Ground Motion Features Important for NPPs

- Systems, Components, Structures (SSCs) important to safety
 - Main frequency band of interest: 3-30 Hz
- Few SSCs are sensitive to low frequency ground motions
 - Sloshing (spent fuel pool, reservoirs)
 - Sliding of spent fuel racks
 - Cranes

Magnitude Scaling of High Frequency Ground Motion at Short Distances (SS)

What Can Cause Beyond Design Basis Ground Motion?

Unusually Large Ground Motion 2011 Christchurch Eqk (5 Hz)

Magnitude MNw=6.1, Reverse, Top of Rupture=2 km

Example: HW Effects (84th percentile)

Design Ground Motions

- Development of design ground motions are based on source characterization (e.g. magnitude, distance, mechanism), ground motion model, and site condition
- Once design level is set, it does not change with new science, unless it is found to be inadequate
- Improved science leads to changes in source characterization, ground motion model, and site condition
 - Using new science, can check on the what events are within the design basis
 - Determine if there is acceptably low residual risk

Example – Diablo Canyon

- Design Ground Motion 1977
 - Based on
 - M7.5 earthquake on Hosgri fault at 5 km distance
 - Using 1970s ground motion models
 - 84th percentile ground motion

Mag Scaling vs Aleatory Varibility

Example: Sensitivity to Dip (84th)

Example: Sensitivity to Segmentation

Example: Sensitivity to Segmentation (5 Hz)

Linking faults leads to larger magnitude earthquakes, but lower rates

NPPs: Residual Risk

- Probabilistic Risk Analysis (PRA)
 - Identifies potential vulnerabilities if beyond design basis ground motions occur
 - If possible, make modifications to strengthen weak link
 - Estimate the chance that this happens (hazard) and the chance of failure if large GM happens (fragility)
 - Typically use UHS
 - Does not address issue of what extreme events will look like
 - Use Conditional spectra?

Fragilities

• DCPP

 Intensity measure (IM) for fragility is Sa averaged over 3-8.5 Hz

• SONGS

- IM for fragility is the weighed average of the Sa at four frequencies:
 - 1 Hz (wt = 1/6)
 - 2.5 Hz (wt = 1/3)
 - 5 Hz (wt = 1/3)
 - 10 Hz (wt = 1/6)

Fragilities

- Structural models
 - Simple lumped mass models used to estimate floor spectra
 - Note: Core damage frequency dominated by failure of equipment, not structural collapse
- Improving structural models?
 - Need to get high frequencies (up to 30 Hz)
 - Can finite-element models improve floor spectra over lumped mass models?

Fragilities

- Improving the input ground motion description
 - Currently based on scaling of UHS at a reference level (such as 1E-4)
 - UHS is an envelope of different earthquakes
 - Disadvantage: Generally, not realistic ground motion
 - Advantage: limits the number of cases to run
 - Alternative: use conditional spectra (includes variability about CMS)
 - Disadvantage: requires many more runs (100s of time histories)
 - Advantage: properly tracks correlations of spectral values at different frequencies.
 - Should remove some conservatism in the core damage frequency based on UHS method

Summary

- Ground Motion Hazard (high frequency)
 Dominated by nearby faults (< 15 km)
- Key Issues
 - Main offshore strike-slip faults
 - Slip-rate
 - Linking SS faults is not critical
 - Thrust faults
 - Geometry (location, dip)
 - Slip-rate
 - Hanging wall effects in GMPEs

Summary

- Beyond design basis events need to be considered
 - Ground motion
 - Aleatory variability is key factor leading to beyond design basis events
- Residual Risk
 - Seismic hazard should be mean centered with uncertainty
 - Need improved characterization of extreme events (large high frequency ground motions)
 - Not just scaling up typical events
 - Conditional spectra

Summary

- Improvements to PRA
 - Fragilities could be improved using modern engineering methods
 - Consider the required frequency band (up to 30 Hz)
 - Change from UHS to conditional spectra would provide more realistic input ground motions, accounting for variability in spectral shape
 - Improved characterization of extreme events (large high frequency ground motions)