PEER Annual Meeting 2011

RESEARCH PLAN OF HIGH PERFORMANCE CONCRETE STRUCTURAL WALLS FOR TALL BUILDINGS

Ying Zhou (周颖)

Associate Professor

State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China October 1, 2011

1. Background

1.1 Current development of tall buildings worldwide

- Council on Tall Buildings and Urban Habitant (CTUBH):
- Top 15 tallest buildings: 9 (China)
- Top 38 tallest buildings (2005~2010): 17 (China); 8 (Dubai)
- The construction center of tall buildings has transferred from North America to Asian and Middle East.

CTBUH, 2011/8/4

#	-	building name	city	meters	feet	et fl. yea		material	use	
1.		Burj Khalifa	Dubai (AE)	828	2,716	163	2010	steel-concrete	hotel / residential / office	
2.		Taipei 101	Taipei (TW)	508	1,666	101	2004	composite	office	
3.		Shanghai World Financial Center	Shanghai (CN)	492	1,614	101	2008	composite	office / hotel	
4.		International Commerce Centre	Hong Kong (CN)	484	1,588	108	2010	composite	office / hotel	
5.		Petronas Tower 1	Kuala Lumpur (MY)	452	1,482	88	1998	composite	office	
5.		Petronas Tower 2	Kuala Lumpur (MY)	452	1,482	88	1998	composite	office	
7.		Zifeng Tower	Nanjing (CN)	450	1,476	66	2010	composite	office / hotel	
8.		Willis Tower	Chicago (US)	442	1,450	108	1974	steel	office	
9.		Guangzhou International Finance Center	Guangzhou (CN)	439	1,439	103	2010	composite	office / hotel	
10.		Trump International Hotel & Tower	Chicago (US)	423	1,388	98	2009	concrete	hotel / residential	
11.		Jin Mao Building	Shanghai (CN)	421	1,379	88	1999	composite	office / hotel	
12.		Two International Finance Centre	Hong Kong (CN)	412	1,351	88	2003	composite	office	
13.		CITIC Plaza	Guangzhou (CN)	390	1,280	80	1996	concrete	office	
14.		Shun Hing Square	Shenzhen (CN)	384	1,260	69	1996	composite	office	
15.		Empire State Building	New York City (US)	381	1,250	102	1931	steel	office	

1.2 Tall buildings in China

1.3 Structural systems for tall buildings

Planar members - Frames

Spacial members

Framed tubes

- Shear walls
- Bracings `

- Core tubes

Structural systems

- Frame structures
- Shear wall structures
- Frame-shear wall structures
- Frame-core tube structures
- Bracing-framed tube structures
- Tube-in-tube structures
- Bundled tube structures
- Mega frame-core tube structures earthquake effects

and wind loads.

indispensable

to sustain the

horizontal

uctural walls are

elements of tall and

super-tall buildings

vertical gravity and

2. Structural walls of tall buildings

2.1 SRC shear walls (1)

2.1 SRC shear walls (2)

Test Setup

2.1 SRC shear walls (3)

Observations

2.1 SRC shear walls (4)

Observations

2.1 SRC shear walls (6)

Formulations

For SRC walls,

$$V_{u}^{SRCW} = \frac{1}{\lambda - 0.5} \left(0.04 f_{c} b h_{0} + 0.1 N \frac{A_{w}}{A} \right) + 0.8 f_{yv} \frac{A_{sh}}{s} h_{0} + \frac{0.5}{\lambda} f_{a} A_{a}$$

The dowel action and
confinement effect of edge
structural steels

For SRC tubes,

$$V_{u}^{ST} = \frac{1}{\lambda - 0.5} \left(0.04 \frac{\beta_{r} f_{c} b h_{0}}{\sqrt{2}} + 0.1N \frac{A_{w}}{A} \right) + 0.8f_{yv} \frac{A_{sh}}{s} h_{0} + \frac{0.5}{\lambda} f_{a} A_{a}$$

First Conference on Advances in Experimental Structural Engineering (2005)

2.2 SRC shear walls (1)

Steel embedded in the middle and at boundaries

2.2 SRC shear walls (2)

Only boundaries

Both boundaries and middle sections

Specimen name	Aspect ritio	Axial force ratio	Crack load $P_{\sigma}(0N)$	Disp. at the crack load D_{σ} (mm)	Meta load P_{p} (kN)	Disp. at the yield load D_y (mm)	Maximum Iorad P _m (kN)	Disp. at the max. load D_{∞} (mm)	Ultimate Icad P _a (RN)	Disp.at the ultimate load D_{π} (mm)	Disp. ductility factor µ
CSW-2	3.75	009	30	4.2	64	11.3	107	2.1.7	- 91	85 O	7.5
CSW-3	3.75	0.18	50	3.6	6.6	10.4	116	248	99	63-0	6.5
CSW-4	2.00	0-18	100	3.6	260	8-6	30.7	20-2	261	37.7	4-4
CSW-5	1.50	0.18	2.00	3.2	402	7.3	48.9	14-4	4.16	28.0	3-8
CSW-6	1.50	0.18	1 00	2.3	37.9	8-1	41.9	13-2	3.56	27-0	3-3
CSW-7	1.50	O-18	200	23	384	8.5	523	2040	445	34-7	4-1
CSW-8	1.50	0-09	1.50	3.3	37.6	9.0	48.0	23.0	408	40.3	4.5
CSW-9	1.50	0.09	1.50	3-0	33.9	8.9	42.6	15-3	362	37-8	43
C SW-10	1.50	0.02	150	2.8	38.5	8.7	48.4	19-8	4.12	39.3	4-5
CSW-11	1.50	0-18	1.50	2.5	38.3	7.4	51.2	20.0	435	35.2	47
CSW-12	1.50	0-18	200	2.9	383	7.5	51.7	20-5	439	36-8	4-8
CSW-B	1.50	0.18	150	2.3	364	5 0	47.5	10-1	404	20.0	4-0
CSW-14	0-80	0.18	1 70	1.8	50.4	4.8	56.6	8-8	481	10-0	2.1
CSW-15	C-8D	0.24	200	1.7	590	6.5	.59.7	10-3	507	11-3	1.7
CSW-16	0.80	0.18	1 70	2.3	58.9	6.4	59.8	11-3	5.08	14-1	2.2

MSS did not affect the final failure mode of the CSW, but they would restrain the development of cracks and prevent the concrete from serious spalling.

• The effect of the embedded steel sections is not significant at the elastic stage. When structure entered nonlinear stage, however, the steel members encased in the reinforced concrete shear walls contributed to the good performance of structures. *SDTSB* (2010)

2.3 Problems

2008 Wenchuan Earthquake

Experiment

2010 Chile Earthquake

There still are damages to shear walls.

3. Earthquake resilience of tall buildings

3.1 Earthquake resilient structures

 Structures without damages or with only minor damages happened after earthquakes are called "Earthquake resilient structures", which recently has been a worldwide hot issue in earthquake engineering.

3.2 Earthquake resilience of tall bldgs

4. HP concrete structural walls of tall buildings

- In the next couple of years there will be increasing design and construction of tall buildings in China.
- To improve the seismic performance of shear walls for tall buildings, steel reinforced concrete (SRC) walls have been experimentally and analytically studied.
- High performance concrete shear wall will be explored for the earthquake resilience of tall buildings.
- Collaboration with professors in material is strongly needed for this research.

Thanks for your attention!

- Any Question?
- Any Suggestion?

