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Problems with many current bridge structures:

Example #1: Bridge Columns

Deterioration caused
by
both environmental

and seismic loading
conditions.

(Corrosion)




Problems with many current bridge structures:

Example #2: Bridge Approach Slabs
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High Performance Hybrid Fiber
Reinforced concrete (HyFRC)
composite

Enhances durability and damage resistance of
bridge structures when exposed to both
environmental and mechanical/seismic loading
conditions

Extends Service Life and Sustainability of
bridge structures

Civil and Environmental Engineering Department, University of California,
Berkeley, CA 94720




HyFRC: concrete matrix with 9.5mm CA; 1.5 vol% fibers;
contains both micro & macrofibers for multi-scale crack control
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‘% Length [mm] 8 60
N - Diameter [mm] 0.04 0.75
Hybrid Fiber Reinforced Aspect Ratio [L/d] 200 80
Composite (HyFRC) Elastic Modulus [GPa] 42 200
Tensile Strength [Mpa] 1600 1050

Volume Fraction [%] 0.2 . 0.8
Fiber Spacing [mm] 0.79 7.43
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HyFRC concrete matrix with 9.5mm CA; 1.5 vol% fibers;
contains both micro & macrofibers for multi-scale crack control
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«1st generation of HyFRC:
*Bridge Approach Slabs for Area Ill (CalTrans)
«2"d generation of HyFRC:
Increase Material | Self-compacting HyFRC: Bridge Columns (PEER)
puey e «3d generation of HyFRC:
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Widpolnt Displecement (] | Carbon Footprint of Highway Structures (FHWA)
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Example #1:
Damage Resistance of Bridge Columns

exposed to Seismic Loading

Bridge Columns with self-compacting HyFRC
(SC-HyFRC)

PEER funded project (Ostertag& Panagiotou)




« 1:4.7 Scale Specimens
» Aspect Ratio, H/ D = 4
- Axial Load Ratio, N/f’ A, = 0.1
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SPALLING & DAMAGE Resistance in SC-
HyFRC Bridge Columns compared to
conventional concrete columns

despite half

SC-HyFRC columns: Ostertag and Panagiotou
(PEER report 2011/106)
Conv. Concrete Columns: Terzic et al, (2009)

TS-1(a);. 1S-2 (c); Conv. Concrete
©0.,~= 0.37%; ©0.,~0.7%




Example #2:
Damage Resistance of HyFRC bridge approach
slabs exposed to both mechanical &
environment loading conditions

Flexural Performance of 'z scale bridge Frost resistance
approach slabs

Expansion joint——,

HyFRC after [
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Concrete after
cycles

Corrosion resistance

Load Capacity [kips]
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0.02 0.04 0.06 0.08
Midpoint Displacement [in.]

CalTrans Report No. CA09-0632, 2008




Processes responsible for Deterioration of Concrete Bridge Structures
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(Mitigate Expansive Deterioration Processes
through multi-scale crack control in HyFRC)
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Mitigation of Expansive Deterioration
Processes through multi-scale crack control
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HyFRC limits ingress of aggressive agents into concrete

which extends the damage initiation phase
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(Mitigate Expansive Deterioration Processes
through multi-scale crack control in HyFRC)
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Crack control on microscale reduces formation of
expansive reaction products

Alkali silica reaction

gel
Reactive

8 Aggregate BN 48

No crack With microcrack
control control

Corrosion

Corrosion
products

No crack With microcrack
control control




f.'-.x Service life enhancement due to
HyFRC

extends both the initiation phase and slows
down the propagation phase of damage

CONVENTIONAL
REINFORCED
CONCRETE

Initiation Phase is extended due to crack resistance which limits ingress of
aggressive agents into the concrete
Propagation Phase is slowed down due to microcrack control which




Whereas i) Mechanical properties of plain HPFRCCs have
been studied and documented,

i) Durability enhancement investigated and
confirmed

1 Few studies exist on synergy between
HPFRCC matrix and steel rebar.

1 Need Model development and establish
design guidelines

1 Need additional large scale tests to verify
damage resistance and performance
enhancement of HPFRCCs in CIP and

ABC applications




Thank you for your attention




