The Role of Performance-Based Engineering in Tall Building Design

Helmut Krawinkler

Personal Observations

Tall buildings are special

- Socio-economic perspective -- DVs
 - Potential huge impact of the three D's (Dollars, Downtime, Deaths)
 - A disaster can change the landscape of cities
- Engineering perspective -- EDPs
 - Higher mode effects may control structural response
 - P-delta effects may control collapse potential
 - Deterioration together with P-delta will control collapse potential
 - Innovative protective measures deserve much consideration
 - There are phenomena that are not detected in a code analysis
 - plastic hinges in columns
 - Story mechanisms and multiple story mechanisms
 - Importance of gravity system
 - shear amplification in shear walls
- Ground motion/hazard perspective -- IMs
 - Unfortunately we don't know enough about long period frequency content

Design/Assessment Options

Equiv. Static Force Procedure

 Designing for an elastic code base shear and elastic drift limit will result in structures with vastly different damage potential and collapse probability

Linear Dynamic Procedure

• Still the same problems, except accounts for higher mode effects

Nonlinear Static Procedure (NSP)

- Problems with higher mode effects
- Does not detect dynamic redistribution problems such as shear force amplification in wall structures
- Does not capture collapse potential

Nonlinear Dynamic Analysis (NDP)

• Addresses most of the issues, BUT needs performance criteria

Global Pushover Curve, LA-20, without and with P- Δ

Pushover Deflection Profiles, LA 20-story Structure

Dispersion in Story Drifts, LA-20, 2/50 Records

Story 2 Drift Response, LA-20, Various Models

Story Drift Demands – Various Models

STORY DRIFT ANGLE ENVELOPES

Record LA30 (Tabas): LA 20-story, Different Analytical Models

Sensitivity to Strain Hardening, Pushover, LA-20

Dependence of Strong Column Factor on R_{μ} 9-Story, T₁ = 0.9 sec.

IDAs to Collapse P-Delta Included, no Deterioration

 $S_a(T_1)/g$ vs MAXIMUM ROOF DRIFT ANGLE, $\gamma=0.1$ N=18, T₁=3.6, BH, Peak Oriented Model, LMSR-N, $\xi=5\%$, $\alpha_s=0.03$, $\delta_c/\delta_y=inf.$, $\alpha_c=N.A.$, $\gamma_{s,c,k,a}=Inf$, $\lambda=0$

IDAs to Collapse P-Delta Included, with Deterioration

S_a(T₁)/g vs MAXIMUM ROOF DRIFT ANGLE, γ=0.1 N=18, T₁=3.6, BH, Peak Oriented Model, LMSR-N, ξ=5%, α_s =0.03, δ_c/δ_v =4, α_c =-0.10, $\gamma_{s,c,k,a}$ =Inf, λ =0

Median IDAs to Collapse P-Delta without and with Deterioration

 $S_a(T_1)/g$ vs Median Max ROOF DRIFT ANGLE, $\gamma=0.1$ N=18, T₁=3.6, BH, Peak Oriented Model, LMSR-N, $\xi=5\%$, $\alpha_s=0.03$, $\delta_c/\delta_y=var.$, $\alpha_e=var.$, $\gamma_{s,c,k,a}=Inf$, $\lambda=0$

Amplification of Shear Demand in Tall Wall Structures

Does NDP Solve all the Problems

• Not without performance criteria for

- Acceptable direct (\$) loss
- Acceptable downtime loss
- Tolerable probability of collapse

• Not without consideration of uncertainties

- Aleatory uncertainties due to RTR variability
- Epistemic uncertainties inherent in
 - Structural modeling assumptions
 - DM-EDP fragility functions
 - Repair cost functions
 - Economic consequence analysis
- Not without modeling of deterioration for collapse assessment (better analytical models)
- Not without better probabilistic description of ground motion hazard in long period range
 - PGV = 1 2 m/sec??!!

