Modeling of Reinforced Concrete Bridge Columns

Marc. O. Eberhard Michael P. Berry University of Washington

> PEER Annual Meeting, San Francisco, California January 20-21, 2006

Nonlinear Modeling Strategies

Outline

- Column Data
- Cross-Section Modeling
- Modeling with Distributed-Plasticity Element
- Modeling with Lumped-Plasticity Element
- Predicting Damage
- Continuing Challenges
- Summary

PEER Structural Performance Database

- Nearly 500 Columns

 spiral or circular hoop-reinforced columns (~300)
 rectangular reinforced columns (~180)
- Column geometry, material properties, reinforcing details, loading
- Observations of column damage
- <u>http://nisee.berkeley.edu/spd</u>
- User's Manual (Berry and Eberhard, 2004)

Force-Displacement Histories

Screening Criteria

- Representative of modern bridge construction in high seismic zones
- Damage observations available
- Flexural damage
- Axial-load ratio ≤ 0.3
- Displacement-ductility capacity ≥ 6.0
- Longitudinal-reinforcement ratio $\leq 4\%$

45 Columns

Cross-Section Modeling

Reinforcing Steel Model

Giufre-Menegotto-Pinto OpenSees Model: *Steel 02* Model Parameter: **b** = 0.01

Concrete Model

Popovics Curve OpenSees Model: *Concrete04 (Mitra and Lowes 2005)* Model Parameters: Mander et. al. (1988) Coefficients

Cross-Section Fiber Discretization

r/2

Uniform (220 Fibers)

ConfinedUnconfined $n_c^r = 10$ $n_u^r = 1$ $n_c^t = 20$ $n_u^t = 20$

Confined Unconfined $n_{fine}^r = 5$ $n_{\mu}^{r} = 1$ $n_{\mu}^{t} = 20$ $n_{fine}^{t}=20$ $n_{coarse}^r = 2$ $n_{coarse}^{t} = 10$

Reduced (140 Fibers)

Modeling with Distributed-Plasticity Element

Model Components

- Force-Based Fiber Beam-Column Element (Flexure)
- Elastic Shear Deformation
- Zero-Length Bond-Section

Model Components

Flexure Model (Force-Based Beam-Column)

- nonlinearBeamColumn
- 5 integration points for cantilever (6 for double-curvature)
- Fiber section
- Concrete04 (Mander constants)
- Steel02 (Bilinear), b=0.01

Anchorage-Slip Model

- zeroLengthSection
- Fiber section
- Reinforcement tensile stress-deformation response from Lehman et. al. (1998) bond model,
- Effective depth in compression (c)

Shear Model

- section Aggregator
- Elastic Shear, $G = 0.4 * E_{c}$

Model Accuracy

Optimal model based on accuracy of F- Δ and Δ - ϵ

Without Anchorage Slip

	S.R.	<i>M.R.</i>
mean	0.78	1.03
COV	0.20	0.09

With Anchorage Slip

	S.R.	M.R.
mean	0.96	1.04
COV	0.16	0.09

Modeling with Lumped-Plasticity Element

Lumped-Plasticity Model

Lumped-Plasticity Model

- beamwithHinges3
- Elastic Section Properties, A_g and EI_{eff}
- Fiber Section
- Concrete04 (Mander constants)
- Steel02 (Bilinear), b=0.01
- Plastic-Hinge Length, L_p

Lumped-Plasticity Model

•
$$EI_{eff} = \alpha EI_{sec} = \alpha \frac{M_y}{\phi_y}$$
 (Berry, Lehman, Lowes)
 $\alpha = 0.45 + 0.1 \frac{L}{D} \le 1.0$ (modify for beamwithHinges3)

• $L_p = 0.025L + 0.3D$ (Berry, Lehman, Lowes preliminary results)

$$L/D = 4 \rightarrow Lp = 0.4D$$

 $L/D = 8 \rightarrow Lp = 0.5D$

Model Accuracy

Without a

	S.R.	M.R.
mean	0.86	1.06
COV	0.20	0.09

With a

	S.R.	M.R.
mean	1.00	1.06
COV	0.17	0.09

Column Damage

Cover Spalling (Lp = 0.025L + 0.3 D)

	Distributed-	Lumped-	Drift Ratio
	Plasticity	Plasticity	(Berry-Eberhard, 2003)
Compressive Strain in Cover	0.011±0.008	0.0094±0.005	NA
$\Delta_{ m calc}/\Delta_{ m spall}$	0.98±0.37	0.99±0.34	1.07±0.37

Bar Buckling (Lp = 0.025L + 0.3 L)

	Distributed-	Lumped-	Drift Ratio
	Plasticity	Plasticity	(Berry-Eberhard, 2005)
Compressive Strain in Bar	0.043±0.024	0.037±0.014	NA
$\Delta_{ m calc}/\Delta_{ m bb}$	0.95±0.45	0.99±0.31	0.97±0.25

	Distributed- Plasticity	Lumped- Plasticity	Drift Ratio (Berry-Eberhard, 2005)
Tensile Strain in Bar	0.10±0.029	0.096±0.032	NA
$\Delta_{ m calc}/\Delta_{ m bb}$	1.02±0.34	1.00±0.34	0.97±0.25

Continuing Challenges

Strains at High Ductilities

Cyclic Response

Summary

- Both distributed- and lumped-plasticity strategies are available for modeling RC bridge columns.
- Recommendations have been developed for:
 - material models
 - fiber section discretization
 - integration of deformations along member
- Model force-deformation accuracies are similar:
 - $-F_{meas}/F_{calc} \sim 1.05 \pm 0.09$
 - $K_{meas}/K_{calc} \sim 1.00 \pm 0.16$

Summary

Damage Estimates

- accuracies similar to semi-empirical relationships
- More versatile (biaxial deformations, varying P)
- Current Work:
 - strain calculations after spalling
 - column degradation with cycling

Thank you

PEER Annual Meeting, San Francisco, California January 20-21, 2006

PEER Annual Meeting, San Francisco, California January 20-21, 2006

Cover Spalling (Lp = 0.5D)

	Distributed- Plasticity	Lumped- Plasticity	Drift Ratio (Berry-Eberhard, 2003)
Compressive Strain in Cover	0.011±0.01	0.008±0.0038	NA
$\Delta_{ m calc}/\Delta_{ m spall}$	0.98±0.37	0.99±0.34	1.07±0.37

Bar Buckling (Lp = 0.5D)

	Distributed- Plasticity	Lumped- Plasticity	Drift Ratio (Berry-Eberhard, 2005)
Compressive Strain in Bar	0.043±0.024	0.031±0.014	NA
$\Delta_{ m calc}/\Delta_{ m bb}$	0.95±0.45	0.98±0.34	0.97±0.25

	Distributed-	Lumped-	Drift Ratio
	Plasticity	Plasticity	(Berry-Eberhard, 2005)
Tensile Strain in Bar	0.10±0.029	0.083±0.031	NA
$\Delta_{ m calc}/\Delta_{ m bb}$	1.02±0.34	0.99±0.34	0.97±0.25

Strains at Low Ductilities

