Simpson Gumpertz & Heger Inc. Consulting Engineers

Building Engineering
Infrastructure and Special Structures
Construction Engineering

Potential of PBEE in the Selection and Comparative Performance of Structural Systems

Ron Mayes, Craig Goings, Steve Harris and Wassim Naguib –SGH Jack Moehle and Tony Yang – UCB Craig CoMartin

Purpose of the Study

Capabilities of Current Practice How do Different Structural Systems Perform When Evaluating both Drift and Acceleration

VS

Potential of PBEE in Comparing Performance of Structural Systems

Framing Schemes Included in Comparative Study

- Moment Frame
- Buckling Restrained Braced Frame
- Viscously Damped Frame
- Base Isolated Braced Frames

Project Overview

- 3, 9 and 20 story SAC buildings designed using 1997 UBC
- BRB's 45 Ksi yield level.
- Viscously damped moment frames designed for 75% of the base shear and the dampers designed to meet the 2% drift criteria with a 0.4 velocity coefficient.
- Base Isolated Braced Frame 2.5 sec. period
- Focus today on 3 Story Building Results

Structural Systems

- 4 Standard Code Compliant Designs
- Moment Frame, Buckling Restrained Braced Frame, Viscously Damped Frame and Base Isolated Brace Frame
- 2 Higher Performing (Lower Drift) "Hospital" Designs
- BRB with R=3.5 rather than 7
- Viscous damper force increased from 133K to 220K

3 Story SAC Buildings

Building Description:

- 3 Story Building
- 6 x 4 30' bays
- All Stories = 13' tall

Earthquakes

- 50% in 50 year moderate event
- 10% in 50 year design event
- 2% in 50 year maximum credible event
- Near fault events within 10 miles of a fault
- Key results from 5 time histories for each event are averaged – SAC time histories were used.
- Focus on the results of the 50% and 10% in 50 year events.
- All seismic resisting elements were modeled with their non-linear properties using RAM-Perform

1st Key Performance Parameter

- Inter-story Drift key code design parameter
 - Impacts structural frame, building facade, piping and ductwork, partitions
 - 2% drift with 13 ft. story height is 3 inches of inter-story displacement

% Interstory Drift 3 Story - 10% in 50yr Event

% Interstory Drift including Mean of 3 Floors 3 Story - 10% in 50yr Event

Normalized Mean Interstory Drift 3 Story - Design E/Q (10% in 50 Year Event)

2nd Key Performance Parameter

- Peak floor accelerations and floor response spectra not required by code and rarely evaluated in the design process
 - Impacts contents, mechanical and electrical equipment, elevators and ceilings and lights.

Peak Floor Acceleration (ZPA) Damage to Rigid Contents and MEP

Average Peak Floor Acceleration (ZPA) 3 Story - 10% in 50yr Event

Normalized Mean Peak Floor Acceleration 3 Story - Design E/Q (10% in 50 Year Event)

Peak of Spectra or Average Over a Period Range of Floor Spectra - Damage to Flexible Contents and MEP

Normalized Peak Floor Spectral Acceleration 3 Story - Design E/Q (10% in 50 Year Event)

Comparison of Improved Drift Performance Higher Performance

• BRB – reduce the R-Factor from 7 to 3.5

 Viscously damped frame – increase damper force from 133 K to 220 K

Normalized Mean Interstory Drift 3 Story - 10% in 50 Year Event

Normalized Peak of the Floor Response Spectra 3 Story - 10% in 50 Year Event

PBD – Compare Both Drift and Acceleration

Acceleration vs Drift 3 Story – Design Earthquake – SE Decision Event

Acceleration vs Drift 3 Story – Design Earthquake

Relative Costs – 3 Story Office Building				
Code Design	Framing Cost \$ / sq. ft.	Total Cost \$ / sq. ft.	Increase Cost Over MF	
Moment Frame	\$19.60	\$100.00	Baseline	
Viscous Damped	\$20.20	\$100.60	0.6%	
Buckling Restrained R=7	\$18.50	\$98.90	- 1.1%	
Base Isolated	\$28.90	\$109.30	9.3%	
Concentric Braced	\$15.90	\$96.30	- 3.7%	
Improved Drift Performance				
Viscous damped	\$21.00	\$101.40	1.4%	
Buckling Restrained R=3.5	\$19.30	\$99.70	- 0.3%	

Note: A base isolated building is an additional \$39 / sq. ft. of plan area or \$13 / sq. ft. on a concentric braced frame.

Relative Costs – 3 Story Higher Performance					
Code Design	Framing Cost \$ / sq. ft.	Total Cost \$ / sq. ft.	Increase Cost Over MF		
Moment Frame	\$27.10	\$250.00	Baseline		
Viscous Damped	\$27.70	\$250.60	0.2%		
Buckling Restrained R=7	\$26.00	\$248.90	- 0.44%		
Base Isolated	\$39.00	\$261.90	4.7%		
Concentric Braced	\$23.40	\$246.30	- 1.5%		
Improved Drift Performance					
Viscous damped	\$28.50	\$251.40	0.56%		
Buckling Restrained R=3.5	\$26.80	\$249.70	- 0.1%		

Note: Base isolation cost is \$39 / sq. ft. of plan area or an additional \$13 / sq. ft for a concentric braced frame.

Potential of PEER & ATC 58 PBEE

Conduct a PBEE study to assess the performance of the 6 structural systems using the data developed as part of ATC 58 and PEER project

SGH Consulting Engineers

Performance measures for decision-making

Office Building

 Original damage data was based on the premise that the building was an office building ((70,000 sq. ft.) with a computer center on 3rd floor - \$13M building cost -\$25 /sq. ft. contents and total damage potential of \$9M

Office Building – 10% / 50 Years Code Designs

Office Building – 50% / 50 Years Code Designs

Office Building – 10% / 50 Years Code & Higher Performance Designs

Office Building – 50% / 50 Years Code & Higher Performance Designs

High Tech Manufacturing

- Assumed the same office structure became a high tech manufacturing facility with \$33M in contents. The only change was the potential damage to the contents – all other damage functions remained the same
- A basic limit was we did not change the structure damage states and repair costs so results are interesting from a comparative perspective but not accurate

Use of ZPA, Peak of Spectra or Average Over a Period Range of Floor Spectra for Acceleration Damage

High Tech Manufacturing – 10% / 50 Years Higher Performance Designs – ZPA

High Tech Manufacturing – 10% / 50 Years Higher Performance Designs – Peak Spectra

High Tech Manufacturing – 50% / 50 Years Higher Performance Designs – ZPA

SGH Consulting

A great tool to asses the relative seismic performance of different structural systems and aid in the selection of the structural system for a particular project

Much work remains to be done on the nonstructural and content fragility functions

Thank You

Designers should consider floor accelerations when they next select or recommend a Structural System until

PEER and ATC 58 have completed the tools to perform PBEE

Great Promise of PBEE in Transforming Decision Making Process of SE's