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ABSTRACT 
 

A fully implicit iterative integration procedure is developed for local and geographically 
distributed hybrid simulation of the seismic response of complex structural systems with 
distributed nonlinear behavior. The purpose of this procedure is to allow experimental elements 
in simulations using existing fully implicit integration algorithms designed for pure numerical 
simulations. The implementation difficulties of implicit integration are addressed at the element 
level by introducing a safe iteration strategy and using an efficient procedure for online 
estimation of the experimental tangent stiffness matrix. In order to avoid physical application of 
iterative displacements, the required experimental restoring force at each iteration step is 
estimated from polynomial curve fitting of recent experimental measurements. The tangent 
stiffness matrix is estimated using readily available experimental measurements and by a 
classical diagonalization approach that reduces the number of unknowns in the matrix. 
Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides 
an efficient method for implementation of fully implicit numerical integration in hybrid 
simulations of complex nonlinear structures. The hybrid simulations presented include 
distributed nonlinear behavior in both the numerical and experimental substructures. 

. 
INTRODUCTION 

 
Hybrid simulation combines numerical and experimental methods for cost-effective, large-scale 
laboratory testing of structures under simulated earthquake loading (Mahin et al. 1989; Shing et 
al. 1996; Takanashi and Nakashima 1987). The equation of motion is expressed for the combined 
experimental and numerical components and solved using a time-stepping integration procedure 
as in numerical simulations. Explicit integrators, such as the Central Difference Method, are 
simple to implement in a hybrid test, but their conditional stability limits their application to 
simple structural models. A combination of non-iterative implicit and explicit integration 
algorithms (Dermitzakis and Mahin 1985), including the operator-splitting method (Nakashima 
et al. 1990), offer improved stability and accuracy, but  use the initial stiffness matrix to predict 
the nonlinear response of the specimen. A tangent stiffness matrix has been proposed to improve 
this correction (Ahmadizadeh and Mosqueda 2008b). 
 
Fully implicit integration algorithms are widely used in pure numerical simulations of the 
seismic response of structures for their superior stability and accuracy at larger time steps 
compared to explicit methods. However, the direct application of implicit integration algorithms 
to hybrid simulation has been partially limited by the requirement to iterate with experimental 
substructures and difficulties in estimating the experimental tangent stiffness matrix. Past 
implementations have relied on conservative iterations that ensure each iteration results in a 
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monotonically increasing path to the converged displacement (Shing et al. 1991), imposing 
iterations through a feedback loop between the integrator and the experimental substructure 
(Shing et al. 2006; Wu et al. 2007), or treating the interface forces between the experimental and 
numerical substructures as constant external forces (Ghaboussi et al. 2006; Schneider and Roeder 
1994). More recently, Pan et al. (2005) conducted a distributed test using finite element software 
and fully implicit integration algorithms that capture the instantaneous behavior of a single-
degree-of-freedom (SDF) experimental substructure.  
 
In order to extend the capabilities of hybrid simulation to complex structural systems with 
nonlinear behavior distributed throughout the structural model, a fully implicit integration 
method is presented that is compatible with experimental substructures. The implementation 
issues of dealing with the experimental substructure are handled by introducing a safe iteration 
strategy and a procedure for estimation of the experimental tangent stiffness matrix. The 
effectiveness of the proposed integration method is demonstrated through actual hybrid 
simulations that show the ability of this approach to accurately capture the behavior of the 
experimental substructure. The accuracy of the simulation is measured by computing the overall 
energy balance of the simulation and the energy errors introduced by experimental and numerical 
errors (Ahmadizadeh and Mosqueda 2008a). 
 

NUMERICAL INTEGRATION  
 
In a hybrid simulation, the equation of motion of the combined numerical and experimental 
structural model can be expressed as: 
 e+Ma + Cv + r r = f  (1) 
in which M  and C  are mass and damping stiffness matrices of the numerical substructure, f  is 
the external force vector, v  and a  are velocity and acceleration vectors, respectively, r  is the 
restoring force from the numerical substructure, and er  is the restoring force measured in the 
experimental substructures. Here, it is assumed that the nonlinear restoring forces of the 
numerical and experimental substructures are essentially strain-dependent. 
 
Time-stepping integration procedures solve the equilibrium equation of motion (1) at discrete 
time steps combined with the kinematic relations between the states. For example, the finite 
difference kinematic relations in the Newmark’s Beta integration procedure (Newmark 1959) 
are: 

 
( ) ( )2 2

1 1
1
2n n n n nt t tβ β− −

⎛ ⎞= + Δ + − Δ + Δ⎜ ⎟
⎝ ⎠

d d v a a  (2) 

 ( )1 11n n n nt tγ γ− −= + − Δ + Δv v a a  (3) 
where d  is the displacement vector, tΔ  is the integration time step, n  is the integration step 
number, and β  and γ  are integration parameters that affect the stability and accuracy of the 
integration scheme, such as numerical damping and period elongation. Numerical damping in the 
integration algorithms is sometimes used to suppress the response of high-frequency modes of 
vibration that may be excited by experimental errors and measurement noise. In order to provide 
numerical damping without affecting the accuracy of the integration algorithm, Hilber et al. 
(Hilber et al. 1977) proposed the α-method for numerical integration. This algorithm is used here 
with the restoring force: 
 ( )1 1n n n n n− −= + −r r K d d  (4) 
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In hybrid simulations, implementation of a fully implicit iterative integration procedure is 
difficult because of: (i) the required online estimation of experimental tangent stiffness matrix, 
(ii) the potential for unwanted damage to the experimental substructure through application of 
iterative displacements, and (iii) uncertainties in convergence of iterative scheme in nonlinear 
simulations involving numerical and experimental errors. 
 
Iterative integration procedures are preferred for numerical simulation of large systems with 
distributed nonlinearities. Here, it is attempted to provide an efficient implicit integration 
procedure for hybrid simulations of large structural systems that can accurately capture large 
nonlinearities distributed throughout the structure. 

 
Proposed Implicit Integration Algorithm 
 
Each step of the proposed implicit integration procedure begins with calculation of the desired 
displacement vector. For this purpose, the predictor displacement vector 

l
nd  is obtained from 

Equation (2) by temporarily setting 0β = : 

 
( )2

1 1
1
2n n n nt t− −= + Δ + Δd d v a

 
(5) 

and transforming the result to actuator local coordinate system. This displacement vector is 
applied on the experimental substructure and measurements are fed back to the numerical 
simulation module. Next, these measurements are used to solve the time discrete form of (1) 
iteratively. The restoring force vector is updated in each iteration according to the new iterative 
displacement vector and then used to estimate the stiffness matrices of numerical and 
experimental substructures using: 
 ( )e,l e,l e,l l l,m

n n n n n= + −r r K d d  (6) 

In (6) , 
e,l
nr  is the measured experimental restoring force, 

l,m
nd  is the measured displacement 

vector, and 
e,l
nK  is the experimental tangent stiffness matrix, all expressed in actuator local 

coordinates. Note that in the conventional operator-splitting method, this correction is made once 
in each integration step using the initial stiffness matrix of the experimental substructure. Here, 
iterations are repeated until a specified convergence criterion is satisfied. The implementation 
procedures of the proposed algorithm are explained further in the following sections. 
 
Estimation of Experimental Restoring Forces 
 
The experimental restoring forces can be updated without physically imposing iterative 
displacements by interpolation and extrapolation of the most recent force and displacement 
measurements (Ahmadizadeh et al. 2007). The experimental restoring forces are estimated using 
second-order polynomials fitted to the last four points of force and displacement measurements 
of each actuator. As shown in Fig. 1, the iterative displacement in actuator coordinate system is 
first used to estimate its corresponding time at which the displacement was achieved. This time 
value is then substituted in the force polynomial to give an estimate of the restoring force. The 
increments of displacements and estimated restoring forces from previous step are used to update 
the experimental tangent stiffness matrix following the procedure outlined in the next section. 
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It should be noted that the accuracy of the 
estimated restoring forces is reduced as the 
extrapolation time increases. For this reason, 
limits should be placed on the time parameter 
to avoid excessive extrapolations. It is 
proposed to keep the experimental tangent 
stiffness matrix unchanged when force 
estimation is not possible within the allowed 
time variation range. 
 
The above-mentioned approach eliminates 
the need for physical application of iterative 
displacements on experimental substructure. 
As a result, potential displacement reversals 
during iterations will not damage the 
experimental substructure or lead to 
erroneous experimental energy dissipation. 
Importantly for geographically distributed 
testing, data exchange between numerical 
and experimental subsystems occurs only 
once in each integration step. 
 
Online Estimation of Tangent Stiffness 
Matrix 
 
Methods for updating the tangent stiffness matrix of the numerical substructure during the 
simulation are well established (McGuire et al. 2000). These methods normally take advantage 
of information about element internal forces and plasticity states, which are not available for 
experimental substructures. Here, an efficient method for estimation of experimental tangent 
stiffness matrix is presented. It should be considered that in a typical hybrid simulation, a large 
portion of the test structure is numerically modeled, while the experimental substructures consist 
of only a few degrees of freedom. 
 
The online estimation of experimental tangent stiffness is difficult due to the contamination of 
measurements required for the computation, and the limited data available for establishing the 
full stiffness matrix. To address the first issue, the experimental tangent stiffness matrix is 
updated only in steps with displacement increment sufficiently larger than a specified threshold 
selected as the greater of: 10 times the RMS of displacement noise or a value that results in a 
force (using initial stiffness) 10 times greater than the RMS of force noise (Ahmadizadeh and 
Mosqueda 2008b). The stiffness matrix remains unchanged in integration steps with small 
displacement increments. 
 
A second issue in online estimation of experimental tangent stiffness matrix is the limited 
number of measurements (equal to the number of actuators and load cells, m ) compared to the 
number of elements of the stiffness matrix (up to 2m ). In order to address this problem, 
Ahmadizadeh and Mosqueda (2008b) proposed reducing the number of unknowns using the 
information regarding the element configuration and geometric properties of the experimental 
substructure. This was achieved using a transformation matrix pT  that reduced the m m×  stiffness 
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Fig. 1. Estimation of measured force at 
target iterative displacement using 
polynomials fitted to experimental data 
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matrix of the experimental substructure to a diagonal matrix nP  in an intrinsic coordinate system, 
consisting of parameters that constitute the sources of resistance and nonlinear behavior of the 
experimental substructure: 
 e,l T

p pn n=K T P T  (7) 

where 
e,l
nK  is the experimental tangent stiffness matrix at step n  expressed in actuator local 

coordinate system. By dividing the incremental forces by incremental displacements in 
parameter coordinate system and using the above transformation, the tangent stiffness can be 
obtained in actuator local coordinates. The transformation 

e T e,l
n n=K T K T  can then be used find 

this stiffness matrix in global coordinates, where T  transforms displacements from global to 
actuator local coordinate system. 
 
The above procedure is generalized here by following the classical method of diagonalization of 
stiffness matrix. An m m×  matrix is diagonalizable if it has m  linearly-independent eigenvectors. 
This is the case when the matrix has m  distinct eigenvalues (Greenberg 1998). Given these 
conditions, the following relation can be used to diagonalize the tangent stiffness matrix at step 
n : 
 

1 e,l
n n n n

−=P KΦ Φ  (8) 
in which: 
 [ ]1 2n m n

Φ = φ φ φ  (9) 
is a matrix of normalized eigenvectors (modal matrix) of the local stiffness matrix at step n , 

e,l
nK . 

In addition to the above, the symmetry of the stiffness matrix results in the orthogonality of 
eigenvectors (or the dynamic mode shapes with an identity mass matrix) (Chopra 2001), which 
further facilitates the diagonalization process by changing Equation (8) to: 
 

T e,l
n n n n=P KΦ Φ  (10) 

Hence, a general choice of the transformation matrix pT  is the transpose of the eigenvectors 
matrix: 
 

T
p n=T Φ  (11) 

Since this transformation matrix is square, the number of stiffness parameters to be estimated in 
the diagonal matrix will be equal to m .  
 
It should be noted that since the stiffness matrix is updated in each integration step, the mode 
shapes may also change, and the transformation matrix needs to be updated accordingly. That is, 
an eigenvalue problem involving the tangent stiffness matrix should be solved in each integration 
step. Furthermore, since the stiffness matrix changes within an integration step after being used 
to derive the transformation matrix, an iterative procedure is necessary to simultaneously update 
the stiffness and transformation matrices. In order to avoid these iterations, the tangent stiffness 
matrix in the previous step 

l
1n−K  can be used to derive the mode shapes and the transformation 

matrix. This simplification slightly reduces the update rate of the experimental tangent stiffness 
matrix, which has been observed to be insignificant. 
 
The experimental tangent stiffness matrix obtained using the above diagonalization approach can 
then be used in (6) to update the experimental restoring force used in numerical integration. 
Ideally, the results of this equation should match those found from the fitted polynomials used to 
estimate force increments. However, the calculation of forces through (6) ensures the use of the 
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most accurate data, and that the symmetry and positive-definiteness of the stiffness matrix is 
considered in calculation of the restoring forces, as described above. 
 
Simulation Continuity 
 
Convergence of iterations cannot be guaranteed in integration of nonlinear problems, particularly 
when they involve both experimental and numerical errors. Since the experimental substructures 
may have already been damaged, the simulation cannot be restarted due to convergence failure. 
Hence, the unconverged solutions need to be handled using an alternate approach to maintain the 
continuity of the simulation. In the integration algorithm presented in this paper, it is proposed to 
revert to the solution of operator-splitting method using numerical and experimental tangent 
stiffness matrices to complete integration steps where convergence fails. In this case, the states 
are updated only once, and instead of using fitted polynomials, actual increments of 
displacements and forces are used to update the experimental tangent stiffness matrix. It has been 
observed that the accuracy and stability of the simulation are not significantly affected when the 
integration steps with the above alternative solution are sparsely distributed through the 
simulation (Ahmadizadeh 2007). 
 

EXPERIMENTAL VERIFICATIONS 
 
In this section, the effectiveness of the proposed integration algorithm is demonstrated through 
an actual hybrid numerical and experimental simulation. The hybrid simulation test system at 
Structural Engineering and Earthquake Simulation Laboratory (SEESL) at University at Buffalo 
consists of the test setup, actuator controllers, simulation host PC (running Simulink® (The 
MathWorks® Inc 1994-2007)), and xPC target computers (real-time environments). For fast 
online simulations, the simulation components communicate through Shared Common Random 
Access Memory Network (SCRAMNet). The actuator commands and measurements in this 
hybrid simulation system are updated at a rate of 1024 Hz.  
 
The test structure, shown in Fig. 2, is a 15-story shear building with a setback at the third story 
level. The experimental substructure is selected as the two-story exterior columns of the lower 
levels. The connections of these columns to the 
rigid floors are assumed to be pinned. The 
remaining part of structure is modeled 
numerically. Bouc-Wen hysteretic models 
(Bouc 1967; Wen 1976) are selected to relate 
the story shear and story drifts of the numerical 
substructure. The structure is assigned a 
stiffness of 8.86 kN/mm with a yield 
displacement of 3.6 mm with the exception of 
the first story with a stiffness of 1.77 kN/mm. 
Note that the experimental substructures will 
provide additional stiffness to the first two 
stories. The floor weights are selected to achieve 
a fundamental period of 1.0 s. The structure is 
assumed to be viscously damped with a 
damping ratio of 2% of critical. 
 

Test Structure Laboratory Setup
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Fig. 2. Fifteen story hybrid structural 
model used in experimental simulations 
with experimental substructures indicated 
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The two-degree-of-freedom experimental substructure representing the two-story columns is 
shown in Fig. 3. The specimen consists of two columns and two clevises mounted on top of each 
other. The lateral resistance at the clevis is provided using replaceable coupons that can be 
inserted in the clevises. The columns are designed to remain elastic, thus limiting the yielding to 

the coupons for low-cost nonlinear 
simulations. 
 
It should be noted that the experimental 
substructure behavior is governed by 
rotations at clevises or flexure of columns, 
rather than shear deformations. The delay 
was measured to be about 15 ms in both 
actuators, and was compensated using 
Equation (5) with an adjusted time step 
(Ahmadizadeh et al. 2007).  
 
The response of the test structure is 
simulated for 1940 El Centro earthquake 
(peak ground acceleration = 0.32g) with an 
integration time step of 10/1024 s. The 
displacements at two lower stories along with 
the top floor displacements are shown in Fig. 
5. This graph shows that the structure 
undergoes a small permanent deformation. In 
this simulation, all of the integration steps 
were completed with successful iterations 
(all iterations converged before the 
maximum number of iterations). However, 
the experimental tangent stiffness matrix was 

updated in 69.5% of integration steps. In other integration steps, the displacement increments 
were small, or estimation of forces corresponding to iterative displacements failed within the 
predetermined time variation range. The number of iterations and steps with successful 
experimental stiffness matrix updates are shown in Fig. 4 during a short period of simulation. In 
this figure, the flag variable shown as small circles takes values of 0 or 1, showing the status of 
experimental stiffness matrix update. As illustrated, convergence is normally achieved after only 

 
 
Fig. 3. Two-degree of freedom experimental 
substructure consisting of cantilever with 
two horizontal actuators 
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two iterations, occasionally requiring three iterations. The number of iterations may be more in 
larger structures, or structures with more complex behavior.  

 
The elements of the estimated experimental tangent stiffness matrix are shown in Fig. 6 during a 
short period of simulation. As illustrated, the estimates contain a fair amount of noise, which is 
far smaller than when displacement increment threshold is not taken into account. The noise may 
be further reduced by using better instrumentation, or using equivalent low-pass filters on force 
and displacement measurements, taking care not to alter their phase agreement. A detailed 

examination of Fig. 6 indicates that the stiffness reductions are gradual and coincide with large 
drifts. On the other hand, stiffness matrix elements are shown to sharply increase in displacement 
reversals, which correspond to elastic recovery. 
 
As a measure of accuracy, the hysteretic behavior of the first story hinge is shown in Fig. 7 using 
two different sets of data. The actual hysteretic behavior of this hinge is plotted using 
measurements without any modifications, that may be performed on the measurements for error 
compensation or signal correction.  
 
The converged hysteretic behavior of the first story hinge is also shown in Fig. 7 which is 
obtained using states at the end of the iterative corrections. Through these iterations, the 
estimated tangent stiffness of the experimental substructure is used to modify the experimental 
restoring force and update the states. Hence, the fact that the converged hysteretic behavior does 
not show any significant distortion from the actual behavior demonstrates the effectiveness of the 
proposed procedure for estimation of the experimental stiffness matrix and restoring forces.  
 

CONCLUSIONS 
 
An iterative implicit integration procedure was proposed for hybrid simulation. Through 
polynomial interpolations and extrapolations, this integration method eliminates the need for 
physical application of the iterative displacements on the experimental substructure. In this 
integration method, the tangent stiffness matrix of the numerical substructure can be determined 
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using the conventional methods of numerical simulation. An efficient method was also proposed 
for online estimation of experimental tangent stiffness matrix. This method requires minimal 
information about the experimental substructure, and only uses the readily-available force and 
displacement measurements to update the stiffness matrix. Using this method, the estimation of 
experimental tangent stiffness matrix is carried out only in steps with significant displacement 
increments, to avoid the excessive contamination of results by experimental errors and 
measurement noise. An alternative solution procedure was also adopted to complete integration 
steps with failed iterations and maintain the continuity of the simulation. The proposed 
integration method together with the procedure introduced for estimation of experimental tangent 
stiffness was shown to have excellent performance in accurately capturing the behavior of the 
experimental substructure and maintaining the energy balance of the simulation for testing 
relatively large and nonlinear structures. Future studies will examine the implementation of this 
approach in finite element software, allowing for more complex modeling of the numerical 
model. 
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