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ABSTRACT 
 

The seismic response of one-third-scale three-story steel frames with columns allowed to uplift is 
evaluated and compared with that of fixed-base frames by three-dimensional shaking table tests. 
The base plates with four wings, yielding due to tension of column, are installed at the bottom of 
each column of the first story of the rocking frames. The results are summarized as follows: (1) 
The maximum base shears of the rocking frames are effectively reduced from those of the fixed-
base frames in longitudinal and transverse directions; (2) The response deformations of the 
superstructures of the rocking frames excluding the rocking component are nearly equal to or 
smaller than the elastic response values of the fixed-base frames; and, (3) The maximum column 
tensile forces for the rocking frames are limited to a relatively constant value less than those for 
the fixed-base frames after the uplift motion occurs, whereas the maximum compressive forces 
are almost equal to or less than those for the fixed-base frames. 

 
INTRODUCTION 

 
It has been pointed out by past studies (Housner 1963; Rutenberg et al. 1982; Hayashi et al. 
1999) that the effects of rocking vibration accompanied with uplift motion might reduce the 
seismic damage to buildings subjected to strong earthquake ground motions. The influence of 
uplift motion on the seismic behavior of building structures has been reasonably explained 
through the simple analysis (Meek 1975, 1978) followed by other studies (Chopra and Yim 
1985; Yim and Chopra 1985; Oliveto et al. 2003; Wada et al. 2005; Ishihara 2009). 
 
Based on these studies, structural systems have been studied and developed which allow the 
rocking and uplift motion under proper control during strong earthquake motions (Clough and 
Huckelbridge 1977; Huckelbridge 1977; Kasai et al. 2001; Iwashita et al. 2002; Midorikawa et al. 
2003, 2006). One of the features of an uplift structural system is that the maximum strain energy 
associated with the horizontal deformation of a superstructure is reduced, because a portion of 
the total earthquake input energy exerted to the structural system is dissipated by the potential 
and kinetic energy associated with the vertical motion of the structural system as shown in the 
previous work (Iwashita et al. 2003; Azuhata et al. 2004). 
 
An uplift structural system under research and development by the authors (Midorikawa et al. 
2003, 2006) makes use of the uplift yielding mechanism of specially designed flexing base plates. 
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When the base plates yield due to column tension during a strong earthquake motion, the 
columns uplift and allow the building structure to rock. 
 
Most of the previous studies mentioned above have evaluated the two-dimensional behavior of 
an uplift structural system. Although the three-dimensional response of an uplift structural 
system has been evaluated by the analysis (Midorikawa et al. 2009), it has not been examined 
through an experimental study. 
 
In this paper, the seismic response of one-third-scale three-story steel frames with columns 
allowed to uplift is evaluated and compared with that of fixed-base frames by three-dimensional 
shaking table tests. The inelastic three-dimensional behavior of base-plate-yielding (BPY) 
rocking structural systems is discussed that were retested under three different input-motion 
conditions; one horizontal, two horizontal and three components of the 1995 JMA Kobe record. 
The objective of the study is to improve the understanding of the seismic rocking response of 
structures subjected to strong earthquake motions and to validate the feasibility of designing steel 
frames to enable the rocking response through column base-plate deformations. 

 
TEST STRUCTURES AND EXPERIMENTAL PROCEDURES 

 
One-third-scale three-story, 2×1 bay braced steel frames were tested on the shaking table. The 
test frames were retested using two different base conditions: base-plate-yielding uplift-base 
(BPY model) and fixed-base (FIX model). The test structures are composed of yielding base 
plates, columns, girders, and bracing members, as shown in Figure 1. There is no significant 
difference between two frames in the longitudinal direction, and among three frames in the 
transverse direction. The total height of the test structure is 3 m, 1 m for each story. The floor 
dimension is 4×2 m and the total weight of the test structure is 182 kN. 
 
In the longitudinal (X) direction, the test structure has two moment-resisting frames with a span 
of 2 m each. In the transverse (Y) direction, the test structure has three braced frames with a span 
of 2 m. The bracing member is a high-strength steel bar with a diameter of 9.2 mm and tensile 
strength of 980MPa. These bracing members are prestressed to a half of the yield strength so that 
they resist both compression and tension forces. 
 
Yielding base plates are installed at the bottom of each column of the first story of the test 
structures, as shown in Figure 2. The base plates of BPY model have four wings that are each 
110mm long and 60mm wide. The outside end of each wing of yielding base plate is constrained 
and connected to a steel foundation beam by a steel plate 40mm thick and two high-strength 
bolts (M24) so that plastic hinge lines are formed at both ends of each wing. 
 
The test structures are vibrated in three different input-motion conditions; one horizontal, two 
horizontal and three components of the 1995 JMA Kobe record with its time scale shortened to 
1/√3. Each test structure is subjected to earthquake ground motions several times with the 
maximum input velocity of the vector sum of two horizontal components scaled to a range of 
levels to simulate various earthquake intensities from 0.05 to 0.5 m/s for BPY model and from 
0.05 to 0.2 m/s for FIX model, respectively. Figure 3 shows the acceleration response spectra for 
the 1995 JMA Kobe ground motion record. 
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The instrumentation was designed to measure both global structural response and local element 
response in critical portions of the test structures. The measured data include the following: 
horizontal accelerations on the shaking table, horizontal accelerations and relative horizontal 
displacements at each floor level, axial strains of the first-story columns and bracing members, 
and uplift displacements of the first-story column bases. The maximum sampling frequency is 
1000 Hz. The column shears are calculated from the moment distribution using measured values 
of strain gauges attached to the first-story columns. The base shear is calculated by summing the 
shears of the columns and bracing members at the first story. This value corresponds quite well 
with the base shear obtained from the measured accelerations and masses on each floor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TEST RESULTS AND DISCUSSION 
 

Dynamic Characteristics of Test Structures 
 
The fundamental natural periods and the critical damping ratios for the first mode of the test 
frames estimated from the impact tests using a wooden hammer are listed in Table 1. The critical 
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Fig. 2. Plan of base plate. 
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damping ratios were obtained from the bandwidth method. The fundamental natural period of 
BPY model is longer than that of FIX model by 28 % and 8 % in the longitudinal and transverse 
directions, respectively. 

 
 
 
 
 
 
 

 
Time Histories of Roof Drift, Uplift Displacement and Base Shear 
 
Figure 4 illustrates the time histories of the roof displacement responses of the test frames. The 
BPY and FIX models are indicated by bold and thin lines, respectively. The responses of FIX 
model indicated by dashed lines in Figures 4 and 5 is extrapolated from the test results subjected 
to the maximum input table velocity of 0.2 m/s, based on the assumption that the response of 
FIX model is elastic as is observed in the tests. While the maximum roof displacements of BPY 
model are larger than those of FIX model in the transverse direction, the former are almost equal 
or smaller than the latter in the longitudinal direction. 
 
Figure 5 shows the time histories of the base shear responses of the test frames. The base shears 
of BPY model are smaller than FIX model regardless of the input-motion intensity. Furthermore, 
along with the increase of the input-motion intensities, the difference between two models also 
increases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5. Time histories of base shear. 
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Fig. 4. Time histories of roof drift. 
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Relationships of Base Shear vs. Roof Drift and Uplift Force vs. Displacement 
 
Figure 6 shows the relationships of the base shear and roof displacement of the test frames. The 
response of FIX model is kept in elastic in the test for the maximum input table velocity of 0.2 
m/s. In the response of BPY model, the superstructure is kept in elastic but the plastic 
deformation of yielding base plates is produced in the tests for the maximum input table velocity 
of 0.2 and 0.5 m/s. The higher mode effect is observed in the hysteretic behavior of BPY model. 
The relationships of the uplift force and displacement of yielding base plates are illustrated in 
Figure 7. The uplift force is estimated from the column axial force and the vertical component of 
brace axial force at the first story. In the figure, the effect of the dead loads is excluded since the 
initial values of strain gauges in each shaking test cycle were reset to zero positions in 
instrumentation. It is pointed out that the characteristics of uplift hysteretic behavior at the 
column base obtained from the results by the three-dimensional dynamic tests are consistent with 
the results by the statically cyclic loading tests of yielding base plates subjected an uplift force 
(Ishihara et al. 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7. Uplift force vs. displacement. 
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Fig. 6. Base shear vs. roof drift.
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Distribution of Maximum Response Envelopes along the Height 
 
Figure 8 shows the distribution of the maximum response envelopes of interstory drift and story 
shear along the height of the test frames. The maximum interstory drifts of BPY model are 
smaller than those of FIX model in the longitudinal direction except for the first story. Although 
the maximum interstory drifts of BPY model are larger than those of FIX model in the transverse 
direction, the response values excluding the rocking displacement of BPY model are almost 
equal to or smaller than those of FIX model. When the maximum input table velocity becomes 
0.2 m/s, the response reduction effect of BPY model is clearly observed and all story shears of 
BPY model are smaller than those of FIX model in both directions. It is revealed that the 
response deformation of the superstructure of BPY model is suppressed because of the rocking 
component of the response displacement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Relationships of Maximum Responses vs. Input-motion Intensity 
 
The relationships of the maximum roof displacement of the test frames and input table velocity 
are illustrated in Fig. 9(a). When the maximum input table velocity is less than 0.3 m/s, the 
response values are almost the same between both models in the longitudinal direction. Along 
with the increase of the maximum input velocity over 0.3 m/s, the response values of BPY model 
become smaller than those of FIX model, and the difference between two models increases. In 
the transverse direction, the response values of BPY model are larger than those of FIX model by 
about 40 % regardless of the input-motion intensity. 
 
Fig. 9(b) shows the relationships of the maximum base shear of the test frames and input table 
velocity. The response values of BPY model are smaller than those of FIX model in both 
directions. Furthermore, the difference between both models increases in accord with the 
increase of the maximum input velocity. 
 
Fig. 9(c) shows the relationships of the maximum column axial force of the test frames and input 
table velocity. In the figure, the column axial force does not include the effect of dead loads. The 
variable range of the axial forces is symmetrical in tension and compression before the uplift 
motion is induced. The tensile axial forces for BPY model are limited to a relatively constant 
value after the uplift motion occurs. The compressive axial forces for BPY model are less than or 

Fig. 8. Distribution of maximum response envelopes. 
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about the same as those for Fix model. Consequently, the maximum column axial forces of BPY 
model never exceed those values of FIX model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSIONS 
 

The results of the study are summarized as follows:  
(1) The maximum base shears of the rocking frames are effectively reduced from those of the 
fixed-base frames in longitudinal and transverse directions. 
(2) The response deformations of the superstructures of the rocking frames excluding the rocking 
component of the response displacement are nearly equal to or smaller than the elastic response 
values of the fixed-base frames. 
(3) The maximum tensile forces of columns for the rocking frames are limited to a relatively 
constant value less than those for the fixed-base frames after the uplift motion occurs, whereas 
the maximum compressive forces are almost equal to or less than those for the fixed-base frames. 
Consequently, the maximum column axial forces of BPY model never exceed those values of 
FIX model. 
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