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ABSTRACT 
 

Real-time testing with dynamic substructuring is a hybrid numerical-experimental technique, the 
challenge of which is to ensure that both numerical and physical substructures interact in real-
time, in order to simulate the behaviour of an emulated structure. With this objective in mind, the 
development and implementation of partitioned real-time compatible Rosenbrock algorithms are 
presented in this paper. In detail, we shortly introduce monolithic linearly implicit L-stable 
algorithms with one and two stages, and present an ad hoc real-time implementation and 
application of substructure tests. In view of the analysis of complex emulated structures, we also 
present novel partitioned algorithms conceived under the broad framework of non-overlapped 
domain decomposition techniques. Both the stability and accuracy properties of the proposed 
algorithms are examined through analytical and numerical studies carried out on Single-DoF 
model problems. Also the parallel interfield case is developed. Finally, a novel test rig conceived 
to perform both linear and nonlinear substructure tests is introduced. 

 
INTRODUCTION 

 
In recent years real-time hybrid testing techniques, like the Real-time Testing with Dynamic 
Substructuring (RTDS) and the Hardware-in-the-Loop (HiL) technique, became more and more 
popular in order to study the performance of components and structures subject to dynamic loads 
(Saouma and Sivaselvan 2008; Bursi and Wagg 2008). With regard to time-stepping methods, 
they can be broadly classified in monolithic and partitioned. In a monolithic approach, the 
method integrates: (i) the Numerical Substructure (NS) only, whilst the Physical Substructure 
(PS) can be considered as a black box (Bursi et al. 2008) or as a grey box (Lamarche et al. 2008), 
with estimates of stiffness and damping of the PS included in the Jacobian matrix -see Fig. 1a-
1d-; (ii) both the NS and the PS by means of stiffness estimates (Jung et al. 2007), like in a 
typical pseudo-dynamic (PsD) test. Conversely, a partitioned approach typically solves both NS 
and PS through different integrators and takes into account the interface problem, for instance by 
prediction, substitution and synchronization of Lagrange multipliers (Pegon and Magonette 
2002). In detail, partitioned algorithms can be applied to the Euler-Lagrange form of the 
equations of motion -second-order in time- (Prakash and Hjelmstad 2004, Bonelli et al. 2008) or 
to the Hamilton form of the equations of motion -first-order in time- (Nakshatrala et al. 2008). In 
this paper, we consider both monolithic and partitioned approaches based on L-stable real-time 
compatible Rosenbrock (LSRT) algorithms applied to equations of motion first-order in time. 
 
Most of the aforementioned research works carried out on substructure tests considered structural 
integrators applied to the equations of motion second-order in time. Nonetheless, it is well 
known that the motion of the PS in a substructure test, see Fig.1e, is driven by a transfer system –
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actuator- and sensors, governed by a control unit. Since the control system is typically described 
by first-order Differential-Algebraic Equations (DAEs), the utilized integrators have to deal with 
mixed first- and second-order DAEs. In order to solve this problem, there are mainly three 
options: (i) to use different integrators for structural and control systems, respectively, –see for 
instance Wu et al. (2007), that utilizes the Newmark-β method for the emulated structure and a 
proprietary MTS controller with its own built-in time discretization; (ii) to reformulate the 
control equations in a second-order form (Brüls and Golinval, 2006), and employ a structural 
integrator like the Generalized-α (Chung and Hulbert, 1993) for both systems; to use first-order 
integrators like the LSRT Rosenbrock algorithms, for both structural and control systems. 
Herein, we adopt the last option owing to the favourable properties of LSRT algorithms 
employed in control (Vulcan, 2006). 
 
As far as complex emulated structures are concerned, numerical and control requirements 
impose different time steps for a NS and a PS, respectively. As a result, two main techniques can 
be identified to tackle this problem: (i) model reduction, that represents an effective way to lower 
computation burdens related to the integration of a complex NS, but becomes very inaccurate 
especially for non-linear systems; (ii) multi-time methods that allow to employ different time 
integrators in distinct subdomains. Moreover, subcycling permits to use different time steps in 
different subdomains. The last strategy is relatively simple to implement, but it can hinder 
stability and accuracy properties of the original schemes. Therefore, the paper proposes some 
novel multi-time method with subcycling strategies, and also investigates relevant stability and 
accuracy issues.  
 
The remaining part of the paper is organized as follows. Firstly, it introduces LSRT algorithms 
with one stage (LSRT1) and two stages (LSRT2), as well as the linearly implicit Chang’s method 
(2002), which is nowadays used in real-time substructured tests. Then, some results of real-time 
tests performed both with Chang’s and LSRT monolithic algorithms are presented. Conversely, 
partitioned algorithms and subcycling strategies based on the progenitor LSRT algorithms that 
represent the main focus of the paper are considered. These algorithms first solve the interface 
problem by means of Lagrange multipliers and subsequently advance the solution in all 
subdomains. Thus, stability and accuracy properties of these algorithms are analysed through 
numerical experiments on a Single-DoF split-mass system, including subcycling too. Lastly, a 
novel test rig is introduced, conceived to perform both linear and nonlinear substructure tests on 
Multiple-DoF systems with different configurations of NSs and PSs. 

 
MONOLITHIC INTEGRATION METHODS FOR REAL-TIME TESTING  

 
Linearly Implicit Real Time Compatible Algorithms 

 
In this subsection, we introduce LSRT compatible algorithms developed and suggested by Bursi 
et al. (2008) as well as a linearly implicit Newmark-based algorithm, i.e., the Chang’s method 
(Chang 2002). They are linearly implicit because eliminate the need to solve non-linear systems 
for nonlinear problems. In order to employ LSRT algorithms, the governing system equations of 
motion ( ), , t=Mu r u u can be rewritten into a state-space form 

 ( ) ( ) ( ), ,  with ,  ,
, ,

t t
t

⎧ ⎫⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

uu
y f y y f y

r u uu
  (1) 
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where M stands for the mass matrix which is assumed to be symmetric positive definite for 
simplicity and ( ), , tr u u for the vector of applied and internal forces. In a FE context, the forces 

usually split into ( ), , et = − − +r u u Ku Cu F with a stiffness matrix K, a damping matrix C and a 
displacement vector u. Differentiation with respect to time is expressed by a dot, and thus we set 
u  and  u  to define the corresponding velocity and acceleration vectors.  
 

 
Fig. 1. (a)-(d) Schematic representation of a SDOF split-mass system; (e) block diagram 

representation including delay. 
 
L-stable real-time one-stage (LSRT1) method. When applied to the differential equation 

( ), t=y f y the one-stage real-time method exploits the following expression: 

 [ ] ( )1
1 1 1 1, ,   k k k kt t t bγ −

+= − Δ Δ = +k I J f y y y k   (2) 

where ( )k t≈y y at kt t= , 1k kt t t+Δ = − is the step size and ( )/= ∂ ∂J f y is the Jacobian matrix or an 
approximation thereof. The method is first order accuracy when 1 1b = . The condition necessary 
to the method to achieve L-stability is 1γ = . 
 
L-stable real-time two-stage (LSRT2) method. The two-stage real-time method applied to the 
differential equation ( ), t=y f y reads: 

 [ ] ( )
21

1
1 21 1, ,   k k k kt t t αγ α−

+= − Δ Δ = +k I J f y y y k   (3) 

 [ ] ( )( )21 2

1
2 21 1 1 1 1 2 2, ,   k k k kt t t b bα αγ γ−

+ + += − Δ + Δ = + +k I J f y J k y y k k   (4) 

For the LSRT2 algorithm we introduce two sets of parameters that satisfy second-order accuracy, 
L-stability and real-time compatibility: 1 2 / 2γ = −  and 1 2 / 2γ = + , respectively, together 
with 2 21 1/ 2α α= = , 21γ γ= − , 1 0b = and 2 1b = . The favourable performance of the LSRT2 
method with respect to the low and high-frequency components of the response can be observed 
from Fig. 2, where a comparison with the Generalized-α method (Chung and Hulbert 1993) is 
illustrated. 
 
A-stable Newmark-based method. For the sake of comparison, we introduce the Newmark-
based method proposed by Chang (2002), whose equations read: 

 

( )

1 1 1 , 1

2
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In detail, the two parameters 1β and 2β  read 

 

11 2 1 1
1 0
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2 0

/ 2 / 4 / 2

/ 2 / 4 / 2

t t t

t t

β

β

−− − −

−− −

⎡ ⎤ ⎡ ⎤= + Δ + Δ + Δ⎣ ⎦ ⎣ ⎦

⎡ ⎤= + Δ + Δ⎣ ⎦

I M C M K I M C

I M C M K
  (6) 

where K0 represents the initial stiffness matrix. This method is linearly implicit and second order 
accurate as the LSRT2 algorithm. Nonetheless and differently from the LSRT algorithms, the 
method is linearly implicit only with respect to nonlinear restoring forces while nonlinear 
damping forces render the method implicit. Moreover, the method is A-stable but it does not 
exhibit high-frequency dissipation capabilities as depicted in Fig. 2. 
 

 
Fig. 2. Spectral radiiρ of linearly implicit algorithms with respect to the Generalized-α 

method vs. the non-dimensional frequency Ω.  
 
Real-Time Application to a Linear SDOF Split-Mass System 
 
In order to investigate the performance of the aforementioned linearly implicit integrators 
applied to a Single-DoF system, we consider the split mass system depicted in Fig. 1. System 
parameters were chosen to be 1 5.4 nm kg= , 1 20 /nc kgs m= , 1 100 /nk kg m= , 1 1.8 pm kg=  and 

1 0pc = . Moreover, a sinusoidal external excitation with f=3 Hz and amplitude A=10 N was 
considered. No particular care was adopted to minimize load cell errors. The displacements of 
the Single-DoF system integrated with the Chang’s method and the LSRT2 method with 

1 2 / 2γ = +  are represented in Fig. 3a and 3b, respectively. The Chang’s method leads to 
instability mainly caused by measurement errors and phase lag. Conversely, the numerical 
damping introduced by the LSRT2 algorithm allows the substructure test to be carried out. 
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Fig. 3. Experimental results of a Single-DoF split-mass system, excited by a sinusoidal force 
with A=10 N and f=3 Hz, by using (a) the Chang’s method, (b) the LSRT2 method. 
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PARTITIONED INTEGRATION METHODS FOR REAL-TIME TESTING 
 

With respect to the Newmark’s family of integrators, it has been shown by Prakash and 
Hjelmstad (2004) and Bonelli et al. (2008) that the enforcement of the continuity of velocity 
along interface enables stable solutions. Because we focus on partitioned integrators applied to 
the Hamilton form of the equations of motion, we consider the continuity of acceleration. 
Therefore, the key strategy of the partitioned algorithm is as follows: Lagrange multipliers are 
computed via an acceleration constraint at interfaces and then each subdomain is advanced in 
time by using linearly implicit integrators. 
 
The general form of the dynamic equilibrium equations for coupled dynamic systems by using a 
Lagrange multipliers technique can be written in a compact form as 

 
( )

[ ]

, ,

,

Tt
⎧ ⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤

= +⎪ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎩ ⎭ ⎣ ⎦⎩ ⎭
⎨

⎧ ⎫⎪ =⎨ ⎬⎪ ⎩ ⎭⎩

uI 0 u 0
λ

f u u0 M u G

u
0 G 0

u

  (7) 

With the assumption { }TT T=y u u , the system (7) can be transformed into 

 
( ), Tt⎧ = +⎪

⎨
=⎪⎩

Ay F y C Λ
Cy 0

  (8) 

Here, we can solve (8) for the vector y  
 ( )1 1, Tt− −= +y A F y A C Λ   (9) 

and then the Lagrange multiplier vector Λ, i.e., 
 ( )11 1 ,T t

−− −⎡ ⎤= − ⎣ ⎦Λ CA C CA F y   (10)  

Then we can advance all the subdomains from tk to tk+1. For brevity, we only describe the case 
that uses the LSRT2 algorithm for two subdomains A and B but we consider subcycling. Also 
the algorithm with LSRT2 and LSRT1 algorithms was developed but it is not treated here. Let’s 
assume that a subdomain A is integrated with a course time step AtΔ and a subdomain B with a 
fine time step BtΔ .  

 
Fig. 4. The multi-time-step partitioned algorithm with ss=2: (a) staggered procedure; 

(b) interfield parallel procedure. 
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The proposed solution procedure, sketched in Fig. 4a can be summarized in the following 
pseudo-code: 

1. compute the Lagrange multiplier vector kΛ by solving the interface problem (10); 
2. solve for the intermediate point 1/ 2kt + in subdomain A by means of (3) -First stage-; 

3. interpolate the internal solutions of A with , , 1/ 2,
2

(1 )j A k A kA k
ss

j j
ss ss ++

= − +y y y ; 

4. loops on the ss/2 substeps of the subdomain B from tk to tk+1/2 with j=1, 2, …, ss/2; 
(a) solve for the point tn+j/2/ss in subdomain B by means of (3) -First stage-; 
(b) compute the Lagrange multipliers / 2 /k j ss+Λ  by means of (10); 
(c) solve for the point tn+(j+1)/2/ss in subdomain B by means of (4) -Second stage-; 

5. compute the Lagrange multiplier vector 1/ 2k +Λ  by means of (10); 
6. solve for the point tk+1 in subdomain A by means of (4) -Second stage-; 

7. interpolate the internal solutions of A with , 1/ 2 , 1,
2

(1 )ss j A k A kA k
ss

j j
ss ss+ + ++

= − +y y y ; 

8. loops on the ss/2 substeps of the subdomain B from tk+1/2 to tk+1 with j=1, 2, …, ss/2 
(a) solve for the point tn+(ss+j)/2/ss in subdomain B by means of (3) -First stage-; 
(b) compute the Lagrange multiplier vector ( ) / 2 /k ss j ss+ +Λ  by means of (10); 
(c) solve for the point tn+(ss+j+1)/2/ss in subdomain B by means of (4) -Second stage-. 

 
Absolute Stability Properties of the Proposed Multi-Time-Step Partitioned Methods 
 
Herein, the absolute stability of the proposed methods is investigated by means of a spectral 
approach applied to a Single-DoF split-mass system. When applied to linear problems, the 
methods can be recast into a recursive form as 
 1k k k+ = +y Ry L   (11) 
where R is the amplification matrix and L is the load vector that depends on external forces, 
respectively. In detail, we consider an SDOF split-mass system, with the assumption 

 1
A B

B A

m kb
m k

= =   (12) 

The absolute values of the eigenvalues iλ  relevant to the model problem integrated with the 

staggered partitioned algorithm vs. the numerical frequency / Ak m tΩ = Δ are plotted in Fig. 5. 
Since the algorithm is real-time compatible, the size of the state vector involved in the recurrence 
(11) is 4, and therefore, the number of non-zero eigenvalues of the amplification matrix is 4. 
Among them, only one pair of complex conjugate eigenvalues are principle eigenvalues, whereas 
the other two are spurious. One of the two spurious eigenvalues is unitary. From the stability 
analysis, we can conclude that when ss=1, the scheme is stable. This has also been analytically 
proved by means of linear recurrences. When ss>1, the scheme appears to be stable for all cases 
examined. 
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                         (a)                                                      (b)                                                      (c) 
Fig. 5. iλ of the SDOF problem for the staggered procedure: (a) b1=0.5, ss=1, 

1 2 / 2γ = − ; 

(b) b1=0.5, ss=1, 1 2 / 2γ = + ; and (c) b1=1, ss=10, 1 2 / 2γ = + . 
 

Moreover, both the algorithmic damping ξ and the frequency error ( ) /Ω − Ω Ω  determined by 
the principal eigenvalues are depicted in Fig. 6. We can observe that the partitioned algorithms 
exhibit favourable dissipation capabilities in the high frequency range as the progenitor 
algorithms. 
 

Γ�1� 2 �2, b1�1 Γ�1� 2 �2, b1�0.5

Γ�1� 2 �2, b1�1 Γ�1� 2 �2, b1�0.5

 

(a) 2 4 6 8 10
�0.0

0.5

1.0

1.5

Ξ

  (b)  

(c) 2 4 6 8 10
�0.0

0.5

1.0

1.5
Ξ

  (d)  
Fig. 6. Algorithmic damping ratio ξ and relative frequency error for the staggered 

procedure: (a), (b) ss=1; (b), (c) ss=10. 
 

Convergence Analysis for the Staggered Algorithm 
 
With regard to the convergence of the proposed partitioned algorithm, both the local truncation 
error and the global error were investigated through purely analytical means. For simplicity, we 
present herein the global error analysis carried out for the LSRT2 algorithm by means of 
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numerical experiments performed on a Single-DoF split-mass system. Fig. 7(a) shows the global 
error e versus AtΔ   for the case with subcycling ss=10, which demonstrates that the proposed 
algorithm preserves second-order convergence even in the subcycling case. In addition, the 
global error achieved by the partitioned method proposed by Nakshatrala et al. (2008) is 
presented in Fig. 7(b). One can observe that their method based on the midpoint rule is only first-
order accurate. 
 

    
(a)                                                                    (b) 

Fig. 7. Global error for the staggered procedure with b1=0.5 and ss=10: (a) the LSRT2 
algorithm with 1 2 / 2γ = − , (b) the midpoint rule algorithm. 

 
Extension to a Parallel Partitioned Algorithm 
 
In view of real-time applications, we conceived an interfield parallel algorithm, which is 
sketched in Fig. 4b. Needless to say that the interfield process ongoing in both subdomains A and 
B is inherently parallel, i.e., the integrations of the two subdomains are independent in each step. 
Some convergence properties of the parallel algorithm are presented in Fig. 8. For the case 

1 2 / 2γ = + , several numerical experiments show that the parallel algorithm is always stable; 
while the algorithm with 1 2 / 2γ = −  sometime becomes conditionally stable. In addition, the 
parallel algorithm preserves second-order accuracy as the progenitor monolithic LSRT2 method. 
 

    
(a)                                                                    (b) 

Fig. 8. (a) iλ , and (b) global error of the SDOF problem for the parallel procedure 

with 1 2 / 2γ = + , b1=0.5 and ss=10. 
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A TEST RIG FOR LINEAR AND NON-LINEAR MDOF SYSTEMS 
 
A novel test rig has been designed to perform both linear and nonlinear substructure tests in real 
time on Multiple-DOFs systems. A sketch of the set-up is shown in Fig. 9a: it is characterized by 
two masses and four-DOFs. The non-linearities at this stage derive from mass rotations and 
springs with discontinuous supports. Also non-linear dampers can be introduced. The test rig will 
also be used to test linear and nonlinear control techniques. To evaluate the performance of the 
partitioned algorithms for real-time hybrid testing, we conceived two different configurations 
that are shown in Fig. 9 b and 9c, respectively. 
 

   
(a)                                          (b)                                     (c)                     

Fig. 9. Test rig: (a) experimental set-up; (b) and (c) schematic configurations of numerical 
and physical substructures. 

 
CONCLUSIONS 

 
In this paper, we introduced and applied linearly implicit L-stable Rosenbrock methods with one-
stage and two-stages to real-time dynamic substructure tests. The methods are endowed with 
several favourable characteristics, among which real-time compatibility, explicit evaluation of 
state variables and user-defined high-frequency dissipation capabilities. In detail, the favourable 
properties of the monolithic methods were proved through real-time tests on an SDOF split-mass 
system, in the case of not negligible experimental errors. In view of hybrid testing of complex 
emulated structures, we developed and illustrated a novel staggered partitioned algorithm based 
on the progenitor Rosenbrock method that can incorporate subcycling. Through spectral analysis 
and numerical simulations on an SDOF split-mass system, both stability and accuracy properties 
were shown. In a greater detail, the partitioned algorithm preserved second-order accuracy as the 
progenitor monolithic method, and favourable stability properties. Moreover in view of real-time 
applications, the method was extended to be an interfield parallel procedure. Finally, a novel test 
rig was conceived and presented to perform both linear and non-linear substructure tests on 
Multiple-DoF systems. It will allow also an in-depth study of linear and non-linear control 
strategies of transfer systems. 

1 1,m J

2 2,m J

2mc

1k 2k2c1c

1mc

Actuator 

Σp

1 1,m J

2 2,m J

2mc

1k 2k2c1c 1mc

Actuator 

Σn 

Σp2 

Σn 

Σp1 

Σn2 

Σn1 

3k3c
4k4c



 10

REFERENCES 
 

Bonelli, A., Bursi, O. S., He, L., Magonette, G. and Pegon, P. 2008. Convergence analysis of a 
parallel interfield method for heterogeneous simulations with substructuring. International 
Journal for Numerical Methods in Engineering 75(7):800-825.  

Brüls, O. and Golinval, J. C. 2006. The generalized-α method in mechatronic applications. 
Zeitschrift fur. Angewandte Mathematik und Mechanik (ZAMM) 86(10):748–758. 

Bursi, O. S., Gonzalez-Buelga, A., Vulcan, L. and Wagg, D. J. 2008. Novel coupling 
Rosenbrock-based algorithms for real-time dynamic substructure testing. Earthquake 
Engineering and Structural Dynamics 37(3):339-360. 

Bursi, O. S. and Wagg, D. J. (Editors) 2008. Modern testing techniques for structural systems –
Dynamics and control, Springer, Wien New York. 

Chang S. Y. 2002. Explicit pseudodynamic algorithm with unconditional stability. Journal of 
Engineering Mechanics 128(9):935-947. 

Chung, J. and Hulbert, G.M. 1993. A time integration algorithm for structural dynamics with 
improved numerical dissipation: the generalized-alpha method. Journal of Applied 
Mechanics 60:371-375. 

Jung, R. Y., Shing, P. B., Stauffer, E. and Thoen, B. 2007. Performance of a real-time 
pseudodynamic test system considering nonlinear structural response. Earthquake 
Engineering and Structural Dynamics 36:1785-1809. 

Lamarche, C. P., Bonelli, A., Bursi, O. S. and Tremblay, R. 2008. A Rosenbrock-W method for 
real time dynamic substructuring and pseudo-dynamic testing. Earthquake Engineering and 
Structural Dynamics 38(9):1071-1092  

Nakshatrala, K. B., Hjelmstad, K. D. and Tortorelli, D. A. 2008. A FETI-based domain 
decomposition technique for time-dependent first-order systems based on a DAE approach. 
International Journal for Numerical Methods in Engineering 75(12):1385-1415. 

Pegon, P. and Magonette, G.. 2002. Continuous PsD testing with non-linear substructuring: 
Presentation of a stable parallel Inter-Field procedure. JRC special publication, No. I.02.167, 
E. C., JRC, ELSA, Italy.  

Prakash, A. and Hjelmstad, K. D. 2004. A FETI-based multitime-step coupling method for 
Newmark schemes in structural dynamics. International Journal for Numerical Methods in 
Engineering 61(13):2183-2204. 

Saouma and Sivaselvan (Editors) 2008. Hybrid Simulation - Theory, implementation and 
applications, Taylor&Francis. 

Vulcan. L. 2006. Discrete-time analysis of integrator algorithms applied to S.I.S.O adaptive 
controllers with minimal control synthesis. PhD thesis, University of Trento, Italy. 

Wu, B., Wang, Q., Shing, P.B. and Ou, J. 2007. Equivalent force control method for generalized 
real-time substructure testing with implicit integration. Earthquake Engineering and 
Structural Dynamics 36(9):1127–1149. 

 


